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BLG453E COMPUTER VISION
Fall 2021 Term

Week 12-13

Instructor:  Prof. Gözde ÜNAL

Teaching Assistant: Yusuf H. ŞAHİN

İstanbul Technical University
Computer Engineering Department
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Students will be able to:

1. Discuss the main problems of computer (artificial) vision, its uses and applications

2. Design and implement various image transforms: point-wise transforms, 
neighborhood operation-based spatial filters, and geometric transforms over images

3. Define and construct segmentation, feature extraction, and visual motion estimation 
algorithms to extract relevant information from images

4. Construct least squares solutions to problems in computer vision

5. Describe the idea behind dimensionality reduction and how it is used in data 
processing

6. Apply object and shape recognition approaches to problems in computer vision

Learning Outcomes of the Course
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At the end of Week: Students will be able to:

LO 3. Define and construct segmentation, feature extraction, and visual 
motion estimation algorithms to extract relevant information from 
images

LO 4. Construct least squares solutions to problems in computer vision

Week : Visual Motion Estimation

Overview of Today and Next Week:

1. Visual Motion Detection
2. Visual Motion (Optical Flow) Estimation

3

Video

Video is simply a series of images over time.  

https://www.youtube.com/watch?v=dwDds_zdtXI
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Video as a multi-dimensional signal

We can describe an video as a signal I(x, y, t) with two spatial 
coordinates x, y and a temporal coordinate, t

xy

t

5

6

Video or Time Varying Images

• A video is a sequence of frames captured over time
• Now our image data is a function of space 

(x, y) and time (t)

6
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Framerate
One of the defining characteristics of video is the framerate, usually 
measured in frames per second (FPS), or Hertz (Hz).  Common framerates:
• 24 Hz:  Traditional film
• 25 Hz:  PAL format
• 50/60 Hz: Used in high end TVs.  Supported by YouTube as well.  Most 

modern cameras can record video at this rate.
• Higher framerates possible (depending on hardware):

Slow mo guys
https://www.youtube.com/watch?v=5WKU7gG_ApU

Min: 3:04-3:40

7

Dynamic Scene Analysis
• Motion: A powerful cue used by

humans and animals to extract
objects or regions of interest from a 
background

• Motion in imaging: arises from
relative displacement between the
sensing system and the scene being
viewed

Motion can be used for Scene Segmentation; Tracking Objects; for 
Extracting Higher-level knowledge from the scene, …

8

https://www.youtube.com/watch?v=5WKU7gG_ApU
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Reading Videos in Python

To read the videos frame by frame you can 
benefit from the moviepy library. An example for 
reading frames is given below.

9

Writing Videos in Python
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Q: Motion Estimation Output ?
2D Motion Field

11

12

2D Motion Field

12
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Video analysis
One can apply computer vision techniques to video to solve a variety of problems

Super-resolution

Tracking
Motion estimation

Dr. Greg Slabaugh

https://www.youtube.com/watch?v=d-RCKfVjFI4

13

Motion Segmentation

• Automatic video object cut-out
• Offline analysis with minimum user input
• Behavior analysis via post-processing

Input video Output

(Tsai, Flagg, Rehg) Gatech

14
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Moving Image analysis
One can apply computer vision techniques to video to solve a variety of problems

Structure from motion

SFMedu: A Structure from Motion System for Education, J. Xiao

15
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More Applications of Motion Estimation and Detection

* Visual Surveillance: stationary camera watches a 
workspace -find moving objects and alert an operator 

* Video Coding: use image motion to perform more efficient coding of images

* SLAM / Navigation: moving camera navigates a workspace
• camera moves through the world - estimate its trajectory » use this to control

the movement of a robot through the world;   
• » use this to remove unwanted jitter from image sequence – image stabilization 

and mosaicking

17

Augmenting a video

Place synthetic objects into a video stream by processing each video frame. 

https://www.youtube.com/watch?v=Ag7H4YScqZs

18
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How can we estimate motion from images?

http://i21www.ira.uka.de/image_sequences/

University of Karlsruhe: Image Sequences publicly available: 

Flower Garden image sequence

19

20 MASKS © 2004
Figure from book: An Invitation to 3D vision

Motion Estimation and Motion Segmentation Example

20

http://i21www.ira.uka.de/image_sequences/
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22

We’ll study 2 things:

q Motion Detection

q Motion Estimation

22

23

Motion Detection

* Simplest spatial techniques for detecting changes
between two image frames:

1. Frame Differencing

2. Background Subtraction

Video: Time varying image:    I(x,y,t) : R2 x R à R

https://www.youtube.com/watch?v=9TAgml89eWM

23
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Motion Detection based on Temporal Differencing

Figures from the Article: Motion Saliency Detection based on Temporal Difference, 
Z. Wang, J. Xiong, Q. Zhang, J. Electronic Imaging, 24(3), 2015. 
http://electronicimaging.spiedigitallibrary.org/article.aspx?articleid=2342756

Method calculates the differences of adjacent frames, also a background difference, details of 
how those are combined are in the following paper:

24

25

Frame Differencing: How to choose T?

î
í
ì >-

=
otherwise

TtyxItyxIifyxd ji
ij 0

),,(),,(1),(

Trucco, Verri, Book: “Introductory Techniques for 3D Computer Vision”, Chapter 8.6  Motion Segmentation

* Assumption: difference is mainly due to camera noise: 
Histogram should look like a zero-mean Gaussian
* Choose the threshold T as a multiple of the standard deviation

* T must be chosen so that the
probability of mistaking differences
due to noise for real motion is small

A simple method to find T:
Acquire consecutive images
of a static scene, with no
illumination changes, and
look at the histogram of the
difference images

25
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26Images: Bryan Morse, CS650

Simple image differencing tells/gives you which of the following? 
i. If the image changed
ii. Where the image changed
iii. Motion vector

THQ: Simple Image Differencing

26

28

Motion Detection: Frame Differencing

Non-zero-valued entries in difference image dij may also result
from noise including camera noise

* Typically they are isolated points and can be removed by
a connected comp. analysis

Q: What are Limitations to this approach ?

Dynamic background, camera motion, shadows, changes in scene 
(weather, illumination), clutter

qImplicit assumptions: 
q Static camera or images are registered spatially
q Illumination stays relatively constant

THQ: Limitations

28
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Background Subtraction to detect moving objects

https://www.youtube.com/watch?v=T-L9FoH3D9w

• If we know what the background looks like, it is easy to identify “interesting bits”

• Idea: use a temporal moving average to estimate background (or reference)  image
which has stationary components

*   Compare this frame with (i.e. subtract) subsequent frames including a moving
object
*  Cancels out stationary elements
*  Large absolute values are “interesting pixels”

• Applications
• Monitoring in an office
• Tracking cars on a road
• Surveillance

Check out OpenCV tutorial:
http://docs.opencv.org/trunk/d1/dc5/tuto
rial_background_subtraction.html

29

30

Background subtraction

• A classic computer vision problem is to detect change in a video.  A simple way to achieve 
this is to use a background image.  One can compute the difference between the image 
and background, and threshold the result.

• This identifies pixels whose colour has changed.

Background (B)Image (I) Thresholded difference (M)

http://wordpress-jodoin.dmi.usherb.ca/dataset2014/

30
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Background Subtraction Methods:

We can estimate a Reference background image B easily in one of 
the following ways: (Q: which one is preferred? )

1. Choose one of the frames from stationary scene as B 

2. Take (Weighted) Average of the last N frames
* One can form the background using an average (or ?) of the last N frames.  This 

will allow the background to adapt, e.g., based on time of day.  
* Although individual frames may have foreground objects, if they move quickly 

enough, their effect on the background image will be small.

31

32

Background Subtraction: More Complex Models

3. Once you form a background estimate Bo, update it
For each image frame I:
l Update the background estimate using last N frames:

for a choice of weights wa, wi.
l Motion Detection: Subtract the background estimate from the

current frame, report the value of each pixel where the
magnitude of the difference is greater than some threshold

l Can use morphological operations to clean up spurious pixels

End

Bn+1 = waI + wiB
n−i

i
∑

32
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33

Every 5th frame from a sequence of 120 frames : child playing. 
Frames are used at 80x60 resolution: coarse scale.

Computer Vision book D.A. Forsyth, J: Ponce

Background Subtraction Example:

33

34

Background subtraction: a: Average of all 120 frames (at 80x60 resolution): 

Notice the child spent more time on one side of the sofa then the other (faint blur). 

b. Pixels whose difference from BG exceeds a threshold  
c. Using a smaller threshold

Computer Vision book D.A. Forsyth, J: Ponce

34
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35

Background subtraction: Same as the previous slide, but this time using 160x120 frames. 
Notice that the pattern on the sofa has been mistaken for the child, 
and this has markedly increased at high resolution. 

Computer Vision book D.A. Forsyth, J: Ponce

Why ? An important point here is that background subtraction works 
quite badly in the presence of high spatial frequencies, because when 
we estimate the background, we’re almost always going to smooth 
it.

35

36

Background Subtraction:

4-> Take result of temporal median filtering (preferred over a 
temporal average to prevent outliers)

R(x,y) = Median {I(x,y,t_0), I(x,y,t_1),...,I(x,y,t_N)}

Take the pixelwise median over last N frames
to create the background image

Idea: Relative to the consistent background, the moving objects are just temporal 
outliers, so: Use median filter across time

36
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Background Subtraction: More complex models

5. Per-pixel Gaussian fitting: 
* For each pixel, one can determine the mean               and 

standard deviation of the intensity (or colour) based on the 
last N frames.

* A pixel can then be classified as foreground if its value lies 
outside some confidence interval of the mean.

Note: there are fast ways to incrementally update the mean and standard deviation with each new frame.

Using Gaussian Mixture Models (GMMs): This combines K (e.g. K= 5) Gaussians to model 
the intensity at a pixel through time.  A pixel is compared to the Gaussians, and the best 
matching Gaussian adapts

Q: Use a single Gaussian or multiple?

37

41

Background Subtraction: Cumulative Differences

qIf one can obtain a Reference image, say R(x,y), then can 
look at Accumulative Difference Image (ADI):

qThe entry at a pixel at frame k then corresponds to # 
times its intensity was different from the reference image

î
í
ì >-+

=
-

-

otherwiseyxA
TkyxIyxRifyxA

yxA
k

k
k ),(

),,(),(1),(
),(

1

1

41
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42

( )
î
í
ì >-+

=
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otherwiseyxP
TkyxIyxRifyxP
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1

1

Nk (x, y) =
Nk−1(x, y)+1 if I (x, y,k)− R(x, y)( ) >T
Nk−1(x, y) otherwise

⎧

⎨
⎪

⎩⎪

Background Subtraction: Cumulative Differences

+ADI: Positive ADI 

-ADI: Negative ADI 

Digital Image Processing, Gonzalez & Woods

Suppose a rectangular object is moving in South-East direction:

Absotlute ADI +ADI -ADI

42

43

THQ: Cumulative differences in background modeling

+ADI -ADI 

Match 
+ADI or –ADI gives you a way to estimate initial position and size of a 
moving object?
+ADI or –ADI gives you the direction of the moving object?  

43
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q Considering positive and negative ADIs:

( )
î
í
ì >-+

=
-

-

otherwiseyxP
TkyxIyxRifyxP

yxP
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k
k ),(
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1

1

Nk (x, y) =
Nk−1(x, y)+1 if I (x, y,k)− R(x, y)( ) >T
Nk−1(x, y) otherwise

⎧

⎨
⎪

⎩⎪

q Absolute ADI has both

Background Subtraction: Cumulative

+ADI: gives size of moving object, its initial position

-ADI: gives the direction

+ADI: 

- ADI: 

44

45

Cumulative Difference Images

Digital Image Processing, Gonzalez & Woods

***   +ADI has no change anymore = the object   has completely  
displaced w.r.t. its initial position

45
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46

q Establishing a Reference Image in practice needed when
there are multiple moving objects in busy scenes

q Goal: Remove the principal moving objects in the scene
q Note that frequent update is required
q Idea: Use ADIs

Background Removal

46

47

q When a moving object is completely displaced w.r.t. its original
position (i.e. the white car above), the background in the later
frame (middle image above) can be duplicated in the 1st frame
and one can obtain the reference image on the right.

q Can do this for all moving objects in the scene

Background Subtraction: Remove moving objects

E.g. Can monitor the changes in the +ADI, e.g. When it stopped changing, it is 
possible to locate the original position of the moving object

q Can you see local processing involved?

47
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Moving object removal and ,
Background Completion in a 
Video Sequence,
Park et al, ACIVS 2006

48

49

Motion Detection/Frame Differencing Challenges

* Noise in images can give high differences where there is no
motion

» compare neighborhoods rather than points
» use connected components &/ morphological operations to 
clean spurious responses

*  As objects move, their homogeneous interiors may not result 
in changing image intensities over short time periods

» motion detected only at boundaries
» requires subsequent grouping of moving pixels into objects

49
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50

q create an image of the stationary background by averaging a long
sequence

» for any pixel, most measurements will be from the background
» computing the median measurements, e.g., at each pixel, will with high 

probability assign that pixel the true background intensity – fixed threshold on 
differencing used to find “foreground” pixels

» can also compute a distribution of background pixels by fitting a mixture of
Gaussians to set of intensities and assuming large population is the
background - adaptive thresholding to find foreground pixels

q difference a frame from the known background frame
» even for interior points of homogeneous objects, likely to detect a difference
» this will also detect objects that are stationary but different from the
background

» typical algorithm used in surveillance systems

qMotion detection algorithms such as these only work if the camera 
is stationary and objects are moving against a fixed background

Motion Detection/Bg Subtraction (Summary)

50

51

Shot boundary detection

lCommercial video is usually composed 
of shots or sequences showing the same 
objects or scene

lGoal: segment video into shots for 
summarization and browsing (each shot 
can be represented by a single keyframe
in a user interface)

lDifference from background subtraction: 
the camera is not necessarily stationary

Simple idea: 
For each frame

Compute the distance between 
the current frame and the 
previous one

Pixel-by-pixel differences (or 
Differences of color 
histograms or Block 
comparison)

If the distance is greater than 
some threshold, classify the frame 
as a shot boundary

51
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52

Time-Varying Image Analysis

q Motion Detection: Frame Differencing and
Background Subtraction

q Applications : say a few

q Motion Estimation : Next

52

53

2D Motion Estimation
qWant to estimate the motion field from time-varying 

images using spatial and temporal variations of the 
image brightness

q Lots of uses
l Find about motion of scene objects
l Track object behavior
l Correct for camera jitter (stabilization)
l Align images (mosaics)
l 3D shape reconstruction
l Special effects

53
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2D velocity field

(Heeger, 1998)

Def: 2D velocity field or the optical flow field approximates the true motion field: 
the [2D] projection into the image [plane] of [the sequence’s] 3D motion vectors”
“It is a purely geometrical concept” – Horn and Schunk 1993

54

55

Motion Field (You are not responsible from this slide)
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q Image velocity of a point moving in the scene

Perspective projection:
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Image velocity:
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3D point

2D point

(axb)xc= -(b . c ) a + (a . c) b

Relate 3D motion field and 2D motion field
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Optical Flow = Motion of brightness pattern in the image

What is the next best thing to 2D True Motion Field:
Optical Flow Field

We want to estimate the apparent motion of the image brightness pattern, i.e. 
the optical flow field

Ideally Optical flow = True Motion field

56

57

Optical Flow        Motion Field≠

Motion field exists but no optical flow No motion field but shading changes

57
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58

Optical Flow        Motion Field≠

Motion field exists but no optical flow No motion field but shading changes

58

59

Optical Flow        Motion Field≠
E.g. No motion field but shading changes

59
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60

Motion Field and Optical Flow

60

61

Problem Definition: Optical Flow

qHow to estimate pixel motion from image H to image I?

– Find pixel correspondences
• Given a pixel in H, look for nearby pixels of the same color in I

• Key assumptions
– color constancy:  a point in H looks “the same” in image I

• For grayscale images, this is brightness constancy
– small motion:  points do not move very far

61
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62

Notation: Optical Flow

Time-varying image function is represented by: I(x,y,t)

2D optical flow = (u,v) = V

Partial derivatives denoted by subscripts: e.g.  Ix = ∂I / ∂x

Nabla denotes the gradient operator:

∇I =
Ix
I y

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

62

63

Optical Flow Constraint Equation

– Assume brightness of patch remains same in both images:

– Assume small motion:  (Taylor expansion of LHS upto first order)

),( yx

),( tvytux dd ++

ttime tttime d+
),( yx

Optical Flow: Velocities ),( vu
Displacement:

),(),( tvtuyx dddd =

I (x +u δt, y + v δt,t +δt) = I (x, y,t)

I (x, y,t)+δx ∂I
∂x
+δ y ∂I

∂y
+δt ∂I

∂t
= I (x, y,t)

I (t) I (t +δt)Images:
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64

Equivalently Assumption:  stationarity of image brightness I over time

dI (x(t), y(t),t)
dt

= 0
dx
dt

∂I
∂x
+
dy
dt

∂I
∂y
+
∂I
∂t
= 0

Divide this by       td

Ix u + I y v + It = 0OF Constraint Equation

leads to

Optical Flow (OF) Constraint Equation

δx ∂I
∂x
+δ y ∂I

∂y
+δt ∂I

∂t
= 0

u ∂I
∂x
+ v ∂I

∂y
+
∂I
∂t
= 0u = δx

δt

Inserting: 

v = δ y
δt

OF Constraint
Equation

64

65

We can compute                              using gradient operators! 

But: (u,v) cannot be found uniquely with this constraint, why?

Optical Flow Constraint Equation

Ix u + I y v + It = 0
Optical Flow Constraint Equation

u

v

Note: The constraint equation is a line in variables (u,v)

Ix , I y , It

65
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Finding Gradients in X-Y-t

k

k+1

i i+1

j

j+1

time

x

y

Ix =
1
4δx

[(Ii+1, j ,k + Ii+1, j ,k+1 + Ii+1, j+1,k + Ii+1, j+1,k+1)

− (Ii , j ,k + Ii , j ,k+1 + Ii , j+1,k + Ii , j+1,k+1)]

This is just one way of 
calculating derivatives

66

67

Optical Flow Constraint
• Intuitively, what does this constraint mean?

Q: How can you project a vector onto a given direction? 

V • ∇I
|∇I |

⎛

⎝
⎜

⎞

⎠
⎟
∇I
|∇I |

=

u
v

⎡

⎣
⎢

⎤

⎦
⎥•

Ix
I y

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

|∇I |

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

∇I
|∇I |

=
(u Ix + v I y )
|∇I |

∇I
|∇I |

– The component of the flow in the gradient direction is 
determined

– The component of the flow parallel to an edge is unknown

V • ∇I
|∇I |

⎛

⎝
⎜

⎞

⎠
⎟
∇I
|∇I |

=
−It
|∇I |

⎛

⎝
⎜

⎞

⎠
⎟
∇I
|∇I |

67



32

Page 32

68

Normal optical flow: Vn

This is called the Aperture Problem:
Only the component of the flow in the image gradient ( normal) 

direction is determined

Aperture Problem

Vn = V •
∇I
|∇I |

⎛

⎝
⎜

⎞

⎠
⎟
∇I
|∇I |

= −
It
|∇I |

⎛

⎝
⎜

⎞

⎠
⎟
∇I
|∇I |

68

69

Aperture Problem

69
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70

Aperture Problem

Motion viewed
along just an 
edge is ambigous

70

71

Aperture Problem

The grating appears to be moving down and to the right, perpendicular to the 
orientation of the bars. But it could be moving in many other directions, such as 
only down, or only to the right. It is impossible to determine unless the ends of 
the bars become visible in the aperture. (Picture from Wiki)

71
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Computing Optical Flow
It (p)+∇I(p) ⋅[ u(p) v(p) ]= 0

We want to compute optical flow (2D) vectors:

https://www.mathworks.com/matlabcentral/fileexchange/48745-lucas-kanade-tutorial-example-2?focused=3853985&tab=example

Corners detected Optical flow vectors over corner points
I(t)

I(t +δt)

72

73

Computing Optical Flow

It (p)+∇I(p) ⋅[ u(p) v(p) ]= 0

At a point (pixel coordinate) p in an image, for solving (u,v), we have:

We need additional constraint(s)

Q: How to get more equations for a pixel?

73
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The Lucas-Kanade Method

qHow to get more equations for a pixel?
q Basic idea: impose additional constraints
q Most common is to assume that the flow field is smooth locally, 

but we’ll study even a simpler assumption as shown below.

0][)()( =×Ñ+ vupIpI iit

E.g. If we use a 5x5 window, that gives us 25 equations per pixel!

q Lucas-Kanade method assumes that flow field is locally constant:
i.e. pretend that the pixel’s neighbors have the same (u,v), for all pi :

74

Motion Estimation: The Lucas-Kanade Method

0][)()( =×Ñ+ vupIpI iit

∀pi :

Q: How to get more equations at each coordinate?

Then, a set of spatial coordinates in that neighborhood satisfy:

e.g. A common assumption is that the motion 
field is constant in a local neighborhood:
in the green box in this case (e.g. a 5x5 region)

I(t)

pi

75
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76

The Lucas-Kanade Method
q Construct a linear system of equations

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é

-=ú
û

ù
ê
ë

é

ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê

ë

é

)(

)(
)(

)(

)(
)(

)(

)(
)(

25

2

1

25

2

1

25

2

1

pI

pI
pI

v
u

pI

pI
pI

pI

pI
pI

t

t

t

y

y

y

x

x

x

!!!

225´

A
12´

€ 

V
125´

b

76

77

The Lucas-Kanade Method
q Usually: we have more equations than unknowns
q Construct a least-squares problem:

225´

€ 

A V = b
12´ 125´

€ 

min || A V − b ||2

q Solution: Solve least squares problem to find V

qMinimum least squares solution is given by solution of

€ 

(AT A) V = ATb
22´ 12´ 12´

77
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The Lucas-Kanade Method

q The summations are over all pixels in the KxK window

q2D motion field solution:
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Optical Flow https://www.youtube.com/watch?v=JlLkkom6tWw
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79

Conditions for Solvability

q Optimal (u,v) satisfies Lucas & Kanade equation
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q When is this solvable?
q ATA should be invertible
q ATA should not be too small due to noise

q eigen values l1 and l2  of ATA should not be too small

q ATA should be well-conditioned
q l1/l2 should not be too large (l1 larger eigen value)

79



38

Page 38

80

Low Texture Region - Bad

– gradients have small magnitude

Flower Garden image sequence

80
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Edges – so,so (aperture problem)

– large gradients, all in the same direction

82
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across edge direction

AT A= ∇I∑ ∇I T
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High Textured Region - Good

– gradients are different, large magnitudes
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Eigenvectors of ATA
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q Suppose (x,y) is on an edge. What is ATA ?
q Gradients across edge all point the same direction

q ÑI is an eigen vector with eigen value k ||ÑI||2 

q What is the other eigen value of ATA ?

( ) TT IIkII )()( ÑÑ»ÑÑå

( ) IIkIII T ÑÑ»ÑÑÑå 2)(

86

87

Eigenvectors of ATA

q Suppose (x,y) is on an edge. What is ATA ?

qWhat is the other eigen vector of ATA ?

q Let T be a vector perpendicular to ÑI

q T is the second eigenvector with eigen value 0

q The eigenvectors of ATA relate to edge direction and magnitude

87



42

Page 42

88

THQ: Optical flow field: where is it reliable?

B

A

C

D

E

F
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Revisiting the Small Motion Assumption

qIs this motion small enough?

lProbably not—it’s much larger than one pixel (higher order terms dominate)
lHow might we solve this problem?

90
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Reduce the Resolution!
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image Iimage H

Gaussian pyramid of image H Gaussian pyramid of image I

image Iimage H u=10 pixels

u=5 pixels

u=2.5 pixels

u=1.25 pixels

Coarse-to-fine Optical Flow Estimation
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image Iimage J

Gaussian pyramid of image H Gaussian pyramid of image I

image Iimage H

run iterative OF

run iterative OF

upsample

.

.

.

Coarse-to-fine Optical Flow Estimation
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Affine Motion

94
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Affine Motion
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How do we estimate Motion layers?

96
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How do we estimate Motion layers?
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Example result
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Motion Estimation Summary

Note: Many advanced techniques exist (not covered in this class) 
• Horn & Schunck’s Iterative OF estimation method, uses

smoothness constraint rather than the constant local flow 
constraint in Lucas-Kanade Method

* Feature-Matching based methods
* Other variants are possible ...

q We studied Optical Flow which approximates the true motion 
field of the image plane

qThe Optical Flow Constraint Equation needs an additional 
constraint. e.g. constant local flow which leads to:

q The Lucas Kanade method is the most popular and simple
Optical Flow Algorithm.
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Shot boundary detection

Q: Can you use motion field?

Picture: https://algorithmia.com/algorithms/gifscom/deepshotdetection/docs

Q: Can you use other approaches?

100
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END OF LECTURE
Learning objectives of Week completed: Students are able to:

LO 3. Define and construct segmentation, feature extraction, and 
visual motion estimation algorithms to extract relevant information 
from images

LO 4. Construct least squares solutions to problems in computer vision

Work on your 4th Homework Assignment 
Reading assignment for Motion Detection: Chapter Motion Segmentation
of the book: Digital Image Processing by Gonzalez and Woods

We’ve seen various Applications such as :
Motion Segmentation
Shot Boundary Detection in Video

…
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Computing Optical Flow
• Formulate Error in Optical Flow Constraint:

• We need additional constraints!

• Smoothness Constraint (Horn and Schunk 1981):

Usually motion field varies smoothly in the image. 
So, penalize departure from smoothness:

• Hence use gradient magnitudes of motion field
components as a regularizer

dydxEvEuEC ty
image

xb
22 )( ++= òò

dydxvvuuC yxyx
image

c )()( 22222 +++= òò

102
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Computing Optical Flow

• Horn and Schunk 1981:

Find (u,v) at each image point that MINIMIZES the total 
error:

C = (Ex
image
∫∫ u+Eyv+Et )

2 +α 2(∇u 2
+ ∇v 2 ) dx dy

222
cb CCC a+= a2 : weighting

factor
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Computing Optical Flow (OF)

* Minimize the total error C using calculus of variations:
Use Euler-Lagrange (E-L) equations to find the necessary 
condition for a minimizer of C

C = (Ex
image
∫∫ u+Eyv+Et )

2 +α 2(∇u 2
+ ∇v 2 ) dx dy

C(u) = f (u,∇u, x)dx
Ω

∫

fu − div( fu ' ) = 0

For an integrand with unknown u: 

Necessary condition that minimizes 
C is given by:

Note: The above E-L conditions are re-visited in advanced classes. 
Just know that it is possible to take a functional derivative to 
estimate an unknown function in a cost functional !
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Horn & Schunk OF: Minimization

* Minimize the total error C using its Euler-Lagrange eqns:

Using the approximation of the Laplacian introduced in HS paper
(next slide)
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Horn & Schunk’s Optical Flow
• Horn and Schunk,“Determining optical flow”, Artificial 
Intelligence, 1981.

Approximate the Laplacians of u and v as follows:

106
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Horn & Schunk Optical Flow Algorithm
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Horn & Schunk OF: Iterative Solution
• We now have a pair of equations for each point in the image. 
It would be very costly to solve these eqns simultaneously,
as the corresponding matrix is sparse and very large. 

• Iterative methods, such as the Gauss-Seidel
method can be used.

• We can compute a new set of velocity estimates 
(un+1, vn+1) from the estimated derivatives and the 
average of the previous velocity estimates (un, vn) by:

108
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Local Methods (Lucas-Kanade) – assume (u,v) is locally constant:

- Pros: robust under noise.
- Cons: if image is locally constant, need interpolation steps.

Global Methods (Horn-Schunck) – use global regularization term:

- Pros: automatic filling-in in places where image is constant.
- Cons: less robust under noise.

Finding Optical Flow (Summary)

2)(: tyxLK IvIuIKE ++*= s

( )dxdyvuIvIuIE
Spatial

tyxHS ò Ñ+Ñ+++= )|||(|)(: 222 l

( )dxdyvuIvIuIKE
Spatial

tyxCLG  )|||(|)(: 222ò Ñ+Ñ+++*= ls

Combined Local-Global Method (Weickert et al.)

Kσ – smoothing kernel (spatial or spatio-temporal)

Gordon and Milman, Learning Optical Flow slides
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Summing Up

q Optical Flow
q Algorithms try to approximate the true motion field of
the image plane
qThe Optical Flow Constraint Equation needs an additional 

constraint (e.g. smoothness, constant local flow).
q The Lucas Kanade method is the most popular Optical Flow 

Algorithm.
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