BLG453E COMPUTER VISION

Fall 2021 Term Week 13-14

İstanbul Technical University Computer Engineering Department

Instructor: Prof. Gözde ÜNAL

Teaching Assistant: Yusuf ŞAHİN

1

İΤ

Dimensionality Reduction								
Earl	631	1031	15-31	15 31	150	1: 31	1831	
1831	27	O.A.				1		
(See	000	O Co		Z	35	A.	25	
Se al	S.	R.	and and	R.	E C			
	12	12	150	180			120	
	S	Cal Ba	T	E	E	E	E	
(CE)	and a	No.			S.	S-		
and a	- Sto		and and and and and and and and and and	100	10	6	a a	
64x64 sized images → dimension = 4096 From face database: olivettifaces								

Idea in Dimensionality Reduction: Linear Approach: want to find a mapping $\mathbf{y} = \mathbf{W}^T \mathbf{x}$, with a linear transformation: W is kxd dimensions, $\mathbf{k} << \mathbf{d}$ $\mathbf{y} = \mathbf{W}^T \mathbf{x}$ $\mathbf{W} = \begin{bmatrix} \mathbf{w}_1 & \mathbf{w}_2 & \dots & \mathbf{w}_k \end{bmatrix}$ i.e. write the new variable y (in a low dimension) as a linear combination of original variables: $y_i = w_{i1}x_1 + w_{i2}x_2 + \dots + w_{id}x_d$, $i = 1, \dots, k$ $y_i = \mathbf{w}_i^T \mathbf{x}$ Note: Each x is d-dimensional vector, y is k-dimensional vector

Derive on board

PCA: Least Mean Squares Derivation (You are not responsible from this derivation)

Let us say we have x_i, i=1...N data points in p dimensions (p is large)

If we want to represent the data set by a single point x_0 , then

Can we justify this choice mathematically?

$$J_{0}(\mathbf{x}_{0}) = \sum_{i=1}^{N} \left\| \mathbf{x}_{i} - \mathbf{x}_{0} \right\|^{2}$$

It turns out that if you minimize J_0 with respect to x_0 , you get the above solution, *i.e., the* sample mean.

21

PCA: Mathematical Derivation

Representing the data set x_i , i=1...N by its mean is quite uninformative

So let's try to represent the data by a straight line of the form:

$$\mathbf{x} = \mathbf{m} + a\mathbf{e}$$

This is equation of a straight line that says that it passes through m

Here: e is a unit vector along the straight line

The training points projected on this straight line would be

$$\mathbf{x}_i = \mathbf{m} + a_i \mathbf{e}, \quad i = 1...N$$

What are ai's in this equation? ->

PCA: Mathematical Derivation (Extra for interested)

The preceding analysis can be extended in the following way.

Instead of projecting the data points on to a straight line, we may

now want to project them on a d-dimensional plane of the form:

$$\mathbf{x} = \mathbf{m} + a_1 \mathbf{e}_1 + \dots + a_d \mathbf{e}_d$$

d is much smaller than the original dimension p

In this case one can form the objective function:

$$J_d = \sum_{i=1}^N \| \left(\mathbf{m} + \sum_{k=1}^d a_{ik} \mathbf{e}_k \right) - \mathbf{x}_i \|^2$$

It can also be shown that the vectors e_1 , e_2 , ..., e_d are d eigenvectors

corresponding to *d* largest eigenvalues of the scatter matrix = sample covariance

PCA

Assume we have a set of n feature vectors \boldsymbol{x}_i (i = 1, ..., n) in \mathbb{R}^d . Write

$$egin{aligned} egin{aligned} egin{aligned} eta &= rac{1}{n}\sum_i m{x}_i \ \Sigma &= rac{1}{n-1}\sum_i (m{x}_i - m{\mu})(m{x}_i - m{\mu})^T \end{aligned}$$

The unit eigenvectors of Σ — which we write as v_1, v_2, \ldots, v_d , where the order is given by the size of the eigenvalue and v_1 has the largest eigenvalue — give a set of features with the following properties:

- They are Orthogonal.
- Projection onto the basis $\{v_1, \ldots, v_k\}$ gives the k-dimensional set of linear features that preserves the most variance.

Algorithm 22.5: Principal components analysis identifies a collection of linear features that are independent, and capture as much variance as possible from a dataset.

Computer Vision - A Modern Approach Slides by D.A. Forsyth

END OF LECTURE

Recall Learning objectives of Week : Students are able to:

LO5: Describe the idea behind dimensionality reduction and how it is used in data processing

LO6: Apply object and shape recognition approaches to problems in computer vision

Work on your last Homework Assignment and Your Final Project

 Linear Dimensionality Reduction Principal Component Analysis (PCA) Applications of PCA

-----the end

Multidimensional Scaling (MDS)

• Nonlinear Dimensionality Reduction (advanced topic)

Isomap

- Locally Linear Embedding
- Laplacian Embedding

For your future reference: You are not responsible in this class from the following: State-of-the Art Nonlinear Methods • Tenenbaum et.al's Isomap Algorithm - Global approach: Uses MDS with geodesic distances - On a low dimensional embedding • Nearby points should be nearby. • Faraway points should be faraway. • Roweis and Saul's Locally Linear Embedding Algorithm - Local approach Nearby points nearby • Belkin and Niyogi's Laplacian Eigenmaps for Dimensionality Reduction and Data Representation, "Neural Computation", 2003; 15(6):1373-1396 More Recent ones: t-SNE, Maaten et al 2013 UMAP, McInnes et al 2018