BLG453E COMPUTER VISION
Fall 2021 Term
Week 13-14

istanbul Technical University
Computer Engineering Department

Instructor: Prof. Gozde UNAL

Teaching Assistant: Yusuf SAHIN

Learning Outcomes of the Course

Students will be able to:

1.

2.

Discuss the main problems of computer (artificial) vision, its uses and applications

Design and implement various image transforms: point-wise transforms,
neighborhood operation-based spatial filters, and geometric transforms over images

Define and construct segmentation, feature extraction, and visual motion estimation
algorithms to extract relevant information from images

Construct least squares solutions to problems in computer vision

Describe the idea behind dimensionality reduction and how it is used in data
processing

Apply object and shape recognition approaches to problems in computer vision
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Week : Dimensionality Reduction and its use in Computer Vision

At the end of Week: Students will be able to:

5. Describe the idea behind dimensionality reduction and how it is used in data processing

Dimensionality Reduction and its use in Computer Vision

Dimension: no of variables measured on each observation

Q: Are all the measured variables “important” for understanding the data?

Pixel Values?
A 12MP image is 4000x3000x3(colour)
=36,000,000D (Dimensional)

Intuition: Not all the measured variables are “important” for understanding the
underlying phenomena of interest




Example Toy Problem

* Suppose, want to study motion of the ideal spring: “red” ball of
mass m attached to it, stretch the spring, it will oscillate
indefinitely along the x-axis

camera B ‘
camera C

Y |
=

N\

L1Say we record the ball’s 2D position from three cameras for 10
mins at 120Hz, we have 10*60*120=72,000 measurements or
observations

Example Toy Problem

Q: What is the data dimensionality ?

UIn fact, the spring travels in a straight line: 2 any spread
deviating from the straight line must be noise

UHence, directions with largest variances in our measurement
vector space contains the dynamics of interest

24.01.2022



Dimensionality Reduction
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64x64 sized images - dimension = 4096

From face database: olivettifaces

Dimensionality Reduction

Need to analyze large amounts multivariate data:
= Human Faces, Medical images, speech signals
= Linguistics: Syntactic language analysis
= Climate and atmospheric patterns and data analysis
= Gene Distributions

Difficult to visualize data in dimensions just greater than three.

Discover compact representations of high dimensional data.
= Better Modeling and Recognition
= Probably meaningful dimensions
= Visualization
= Compression
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Dimensionality Reduction

Goal:

High-dimensional observations/data are projected onto
“meaningful” low-dimensional space

* Classical techniques

— Principle Component Analysis—maximizes/preserves the
variance

— Multidimensional Scaling—preserves inter-point distances

9
Concept of Dimensionality Reduction:

‘ Embed data in a higher dimensional space to a lower dimensional manifold
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Types of Structure in Multivariate Data

— Non-Linear e

Q: Can you unroll the non-linear data
to a simpler structure?

http://www.cse.wustl.edu/~kilian/research/manifold/manifold.html|

11

Typically, if 2-3 dimensions are enough to explain the
variability in the data, we can do a visual analysis
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Tennenbaum|Silva | Langford: “A Global Geometric Framework for Nonlinear Dimensionality Reduction (Isomap)
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Overview
* Linear Dimensionality Reduction
Principal Component Analysis (PCA)

* Applications of PCA

References:

General Ref book: E. Alpaydin, “Introduction to Machine Learning”, 2010, Chapter 6
— Tennenbaum&Silva&Langford [Isomap]
— Roweis&Saul [Locally Linear Embedding]
— Belkin&Niyogi [Laplacian Eigenmaps]

13

Idea in Dimensionality Reduction:

Linear Approach:

want to find a mapping y = W' x, with a linear transformation:
W is kxd dimensions, k<< d

y=W'x W=l w w .. w

i.e. write the new variable y (in a low dimension) as a linear combination of original variables:

Y, =w X +w o x, +.+w x , i=lL..,k

T
Y, =W.X

Note: Each xis d-dimensional vector, vy is k-dimensional vector

14
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Linear Dimensionality Reduction:

Derive on board

15

Overview of Principal Component Analysis

Principal component analysis (PCA) is a classical way to
reduce data dimensionality

PCA projects high dimensional data to a lower dimension
using certain eigen directions of the covariance matrix of
the data.

PCA projects the data in the least square sense (derivation
is given in the slides later)

PCA captures big (principal) variability in the data and
ignores other small variabilities

16
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Principal Component Analysis (PCA)

X =|x X ... X

dxN 1 2 N

These are Centered Data Points, i.e. mean is subtracted from each data point:

X =X -X

mean

Calcuate Covariance matrix S of the data:
S =XX"

Perform Eigen Value Decomposition on Data Covariance matrix S,

which is symmetric :
S=VAV'
™

. ] Diagonal Eigenvalue matrix
Eigenvector matrix

17

Principal Component Analysis (PCA)

\

Manifold

/
Second eigenvector direction corresponding to second maximum
eigenvalue (if it is 2D data, this is the only 2" eigenvalue)

First eigenvector direction corresponding to maximum eigenvalue

One Dimensional

18
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—>Maximizing the data variance corresponds to

Finding the appropriate rotation of the canonical basis

Ya

Dimension 2

p Dimension 1
(a) A

19

Note: Independent data: one can not predict rl from r2
e.g. Plot of x, =distance vs. Humidity
Which of the below has low / high redundancy?

low redundancy ‘ ‘ high redundancy

FIG. 3 A spectrum of possible redundancies in data from the
two separate recordings 71 and r2 (e.g. za,yg). The best-fit
line ro = kry is indicated by the dashed line.

20
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PCA: Least Mean Squares Derivation
(You are not responsible from this derivation)

Let us say we have x;, i=1...N data points in p dimensions (p is large)

If we want to represent the data set by a single point x,, then

OzmzﬁZXi —

Sample mean

Can we justify this choice mathematically?

N
Jo(x0)= 2 % =, [
i=1

It turns out that if you minimize J, with respect to xg, you get the above solution,

i.e, the sample mean.

21

PCA: Mathematical Derivation

Representing the data set x;, i=1...N by its mean is quite uninformative

So let’s try to represent the data by a straight line of the form:
X=m-+ae

This is equation of a straight line that says that it passes through m

Here: e is a unit vector along the straight line

The training points projected on this straight line would be

X, =m+ae, i=1..N

What are a/’s in this equation? ->

22
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PCA: Mathematical Derivation

Let’s now determine a;'s N )
J(a,,a,,....ay.e) = 2Hm+ ae— XlH
i=1

N N N

Expand Ji=Ya el =2 ae’ (x,-m)+ Y Ix, ~mIP
i=1 i=1 i=1

N N N

i_

2 T 2
Eai —ZEa,.e (x; —m)+ Ellxi -mll
=1 i=1 i=1

Partially differentiating with respect to a; we get: a, = el (xl, —m)

Plugging in this expression for a; in J; (3rd line above) we get:

N N N
J© ==Y ¢ (x, ~m)(x,~m)" e+ Y| x,~m|F = —¢"Se+ Y| x, ~m
i=1 i=1 i=1

N
T
where §= E(Xf -m)(X; -m)" | s called the sample covariance matrix

i=1

23

PCA: Mathematical Derivation

So minimizing J, is equivalent to maximizing: (& Se
Te=1
Subject to the constraint that e is a unit vector: € €=

Use Lagrange multiplier method to form the objective function:
T T
max e Se—A(e'e—1)
€
Differentiate to obtain the equation: 2Se — 2},{3 = 0 or Se = ﬂ,e

Solution is that e is the eigenvector of S corresponding to the largest
eigenvalue!

24
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PCA: Mathematical Derivation (Extra for interested)

The preceding analysis can be extended in the following way.
Instead of projecting the data points on to a straight line, we may

now want to project them on a d-dimensional plane of the form:

X=m-+ae, +---+a,e,
d is much smaller than the original dimension p

N d
. - 4 J, = 2
In this case one can form the objective function: d— ” (m + aikek) -X ”
i=1 k=1

It can also be shown that the vectors e, e,, ..., e4 are d eigenvectors

corresponding to d largest eigenvalues of the scatter matrix = sample covariance

25

PCA: Summary

* Reduce the number of dimensions of the data points “x” to k << d, where d is the
dimension of points in the original space

* Search in R? for the direction of the unit vector v such that the projection of the set
of N data points x, (n=1,...N) to this direction leads to the scatter of N points with
highest dispersion

* To keep 1 component, pick the one that best separates all the points, ie.has the
highest variance: This is achieved by picking the eigenvector of largest eigenvalue

* You can keep d components by picking d eigenvectors that correspond to d largest
eigen values.

Q: How to pick k? ->

Figure 12.30 — Projecting the samples for the directions vy and vy: the dispersion
of the proiected poinls is more favorable to an analusis for the vector vy than it is for v,

26
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Explained Variance by the k eigenvalues out of d

Eigenvalues are sorted in descending order A >A >..> A,
Mt+A +.+ A,

Proportion (or percent) of variance=100*
MtA+ A+ + A,

Desired: % variance is large while dimension k is much smaller than d

Curves with different
colors correspond to
different datasets

Q: Which dataset
(Blue, Red, or Green)
can achieve higher
compression? i.e.
lower k

Explained variance

50 100 200 250 300

150
Cardinality

No of eigenvalues

27

PCA Applications

28
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PCA

Assume we have a set of n feature vectors @; (i =1,...,7n) in R?. Write
DI
I = == Iy
4 n <
Y = ;Z(r — p)(m; — )"
n—14&"" o
1

The unit eigenvectors of ¥ which we write as vy, v2,...,vq, where the order is
given by the size of the eigenvalue and v, has the largest eigenvalue — give a set
of features with the following properties:

e They are Orthogonal.

e Projection onto the basis {vi,.... v} gives the k-dimensional set of linear
features that preserves the most variance.

Algorithm 22.5: Principal components analysis identifies a collection of linear
features that are independent, and capture as much variance as possible from a
dataset.

Computer Vision - A Modern Approach
Slides by D.A. Forsyth
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Principal Component Analysis: Results
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Principal Component Analysis

PCA 0‘\30“"“"7‘ | Applicotion: Face recognibon 2
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Principal Component Analysis: Results
The '\'OP 6 Oley\W.dror'S (6‘30/\?(10&5)-_

IAPR PCA Lecture Notes
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THQ: Low-dimensional representation of data

Orlglnal Mean

EigenVector 1 EigenVector 2 EigenVector 3 EigenVector 4 EigenVector 5 EigenVector 6

Q: Suppose you want to represent the given original face image in a 3-dimensional (3D)
space: what is the representation you would use to approximate the original image based
on Principal Component Analysis? >

33

Principal Component Analysis: Results
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IAPR PCA Lecture Notes

34
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Face Recognition Using PCA (Eigenfaces)
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Figure 5: The original image (left) and the reconstructed image (middle)
after [ten_principal components Jhave been employed. The right hand plot
shows how the error has decre
employed.
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Difficulties with PCA

* Data may lie on more complex manifolds, e.g. the swiss
roll, or the data on previous slide

* Projection may suppress important detail
— Smallest variance directions may not be unimportant

— The task we are interested in may not correlate with
picking the largest variance directions

* Then you can resort to MDS or Nonlinear
Dimensionality reduction techniques (not covered in

this class) or other such more advanced techniques

39
Robust PCA
Normal PCA decomposition:
min || X — L||3
X=L+E. L -
s.t. rank(L) <K'
Robust PCA decomposition:
minrank (L) + A||S]]o min [[L][x + A[[S]
X=L+S LS ks
st [IX =L —=S[3=0, st [IX=L=S|3=0,

Candés, Emmanuel J., et al. "Robust principal component analysis?." Journal of the AGM
(JAGM) 58.3 (2011) 1-37.

40

20


FreeText
Candès, Emmanuel J., et al. "Robust principal component analysis?." Journal of the ACM (JACM) 58.3 (2011): 1-37.


END OF LECTURE

Recall Learning objectives of Week : Students are able to:

LO5: Describe the idea behind dimensionality reduction and how it
is used in data processing

LO6: Apply object and shape recognition approaches to problems
in computer vision

Work on your last Homework Assignment and Your Final
Project

41

Overview: you are responsible from only bold
items below

* Linear Dimensionality Reduction

Principal Component Analysis (PCA)

* Applications of PCA

Tennenbaum&Silva&Langford)
Roweis&Saul)
Belkin&Niyogi )

42
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EXTRA MATERIAL: Slides on/after this one are
for your reference: You are not responsible in
our class

* Linear Dimensionality Reduction
Principal Component Analysis (PCA)
Applications of PCA

----- the end
Multidimensional Scaling (MDS)

* Nonlinear Dimensionality Reduction ( advanced topic)

— lIsomap
— Locally Linear Embedding
— Laplacian Embedding

43

Linear Dimensionality Reduction

* PCA

— Finds a low-dimensional embedding of the data points that best
preserves their variance as measured in the high-dimensional

input space

Dimension 2

Dimension 1

* MDS
— Finds an embedding that preserves the inter-point distances,
similar to PCA when the points are given rather than distances
between points.

44
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* Here we are given pairwise distances instead of the

Multidimensional Scaling (MDS)

actual data points

— First convert the pairwise distance

matrix into the

dot product matrix

xx7T

— Then, proceed similar to PCA

45

COIRC e WN R

MDS: Example

BOSTON
NY
bC

MIAMI

CHICAGO

SEATTLE
SF
A

DENVER

429 233
1504 1308
963 802
2976 2815
3095 2934
2979 2786
1949 1771

0.43

-0.15

-0.39

3 a s 3 7 8 9
DC MIAM CHIC SEAT SF LA DENV
429 1504 963 2976 3095 2979 1949
233 1308 802 2815 2934 2786 1771
0 1075 671 2684 2799 2631 1616
1075 0 1329 3273 3053 2687 2037
671 1329 0 20123 2142 2054 996
2684 32723 2012 0 808 1131 1307
2799 3053 2142 808 0 379 1235
2631 2687 2054 1131 379 0 1059
1616 2037 996 1307 1235 1059 0
| |

* Given road travel distances between
cities, we try to get an
approximation to the map

* Map deviates from bird-flight path
(Euclidean distance) due to
geographical obstacles (lakes,

mountains ..)

|

La

9 SEATTLE

DENVER
CHICAGO

MIANI

DC
NY
BOSTO [

T T
-0.40 -0.21

T
-0.03 0.16

0.35

46
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MDS is more general

* When the distances are
Euclidean, MDS is
equivalent to PCA

* In MDS: Instead of

pairwise distances we
can use pairwise

“dissimilarities”.

Eg. Face recognition:

May get some significant
cognitive dimensions
(not always true)

47

reduction approaches

Nonlinear Dimensionality Reduction

* Many data sets contain essential nonlinear structures
that can not be recovered by PCA and MDS

* May need to resort to some nonlinear dimensionality

48
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To preserve structure, preserve the geodesic distance and not the
Euclidean distance

O e
at tte ‘e WY, L
T qein e ST TR Ty
T S RS ey el
4% 2,0, %8 Ler

49

Bottom loop articulation

Top arch articulation

-

52
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Locally Linear Embedding

A Manifold is a topological space which is locally Euclidean.”

Fit Locally , Think Globally

53

Fig. 2. Steps of locally lin-
ear embedding: (1) Assign
neighbors to each data
point X; (for example by
using the K nearest neigh-
bors). (2) Compute the
weights W that best lin-
early reconstruct X; from
its neighbors, solving the
constrained least-squares
problem in Eq. 1. (3) Com-
pute the low-dimensional
embedding vectors V, best
reconstructed by W,, mini-
mizing Eq. 2 by findfng the
smallest eigenmodes of
the sparse symmetric ma-
trix in Eq. 3. Although the
weights W, and vectors Y,
are computed by methods
in linear algebra, the con-
straint that points are only
reconstructed from neigh-
bors can result in highly
nonlinear embeddings.

Fit locally ...

04 o @ Select neighbors

K

. 2
o ° . minyy || Xi = ), WiiX; |
e j=1

Reconstruct with
linear weights

Map to embedded coordinates

Nonlinear Dimensionalitv Rediiction by 1 ocally linear Fmbeddine Sam T Roweijs et gl Science 290 22323 (2000):

54
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%o ° (‘D Select neighbors

o % ° [-SE
o ° * )
Xj.
e o ® °
o
0% o °
<] o M
= hink
: o Thin
Reconstruct with
linear weights

Globally...

N
miny Y || Vi — YW; ||?
=1

° Map to embedded coordinates

Yoxn = [Y1|Y2]...|YN]

55

Properties of Locally Linear Embedding Method
(Not linear globally)

U The same weights that reconstruct the data points in
d-dimensions should reconstruct it in the manifold in
k- dimensions

® The weights characterize the intrinsic geometric properties
of each neighborhood

U The weights that minimize the reconstruction errors
are invariant to rotation, rescaling and translation of
the data points

® |nvariance to translation is enforced by adding the
constraint that the weights sum to one

56
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Examples : 2-D embedding of faces

- T T ;
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Fig. 3. Inages of faces (17) mapped into the embedding space described by the fit two
conrdinates of LLE. Representative faces are zhown neat o circled pointz in different parts of the
spoce. The botton images cormspond 1 peints long the top-ight path (inked by 3ol lne)

ifluztrating one partiauky mode of variatility in poze and exprazzion

57
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Short circuit problem

There is a free parameter:

How many neighbours?

* How to choose neighborhoods:

Susceptible to short-circuit errors

if neighborhood is larger than the folds in
the manifold

If nbhd is small, we get isolated patches

59
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Example appllications

nterpolations between distant points in the low-
dimensional coordinate space.

62

24.01.2022

30



State-of-the Art Nonlinear Methods

+ Tenenbaum et.al’s Tsomap Algorithm
- Global approach: Uses MDS with geodesic distances
- On a low dimensional embedding
* Nearby points should be nearby.
* Faraway points should be faraway.
* Roweis and Saul’ s Locally Linear Embedding Algorithm
- Local approach
* Nearby points nearby

Belkin and Niyogi’ s Laplacian Eigenmaps for Dimensionality

Reduction and Data Representation, “Neural Computation”
2003; 15(6):1373-1396

* More Recent ones:
+ 1-SNE, Maaten et al 2013
UMAP, McInnes et al 2018

For your future reference: You are not responsible in this class from the following:

’

63
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