BLG453E COMPUTER VISION

Fall 2021 Term

Week 13-14

İstanbul Technical University Computer Engineering Department

Instructor: Prof. Gözde ÜNAL

Teaching Assistant: Yusuf ŞAHİN

1

Learning Outcomes of the Course

Students will be able to:

1. Discuss the main problems of computer (artificial) vision, its uses and applications
2. Design and implement various image transforms: point-wise transforms, neighborhood operation-based spatial filters, and geometric transforms over images
3. Define and construct segmentation, feature extraction, and visual motion estimation algorithms to extract relevant information from images
4. Construct least squares solutions to problems in computer vision
5. Describe the idea behind dimensionality reduction and how it is used in data processing
6. Apply object and shape recognition approaches to problems in computer vision

Week : Dimensionality Reduction and its use in Computer Vision

At the end of Week: Students will be able to:
5. Describe the idea behind dimensionality reduction and how it is used in data processing

3

Dimensionality Reduction and its use in Computer Vision

Dimension: no of variables measured on each observation
Q: Are all the measured variables "important" for understanding the data?

Pixel Values?
A 12 MP image is $4000 \times 3000 \times 3$ (colour)
$=36,000,000 \mathrm{D}$ (Dimensional)

Intuition: Not all the measured variables are "important" for understanding the underlying phenomena of interest

Example Toy Problem

- Suppose, want to study motion of the ideal spring: "red" ball of mass m attached to it, stretch the spring, it will oscillate indefinitely along the x-axis

\square Say we record the ball's 2D position from three cameras for 10 mins at 120 Hz , we have $10 * 60 * 120=72,000$ measurements or observations

5

Example Toy Problem

Q: What is the data dimensionality ?

\square In fact, the spring travels in a straight line: \rightarrow any spread deviating from the straight line must be noise
\square Hence, directions with largest variances in our measurement vector space contains the dynamics of interest

7

Dimensionality Reduction

- Need to analyze large amounts multivariate data:
- Human Faces, Medical images, speech signals
- Linguistics: Syntactic language analysis
- Climate and atmospheric patterns and data analysis
- Gene Distributions
- Difficult to visualize data in dimensions just greater than three.
- Discover compact representations of high dimensional data.
- Better Modeling and Recognition
- Probably meaningful dimensions
- Visualization
- Compression

Dimensionality Reduction

Goal:
High-dimensional observations/data are projected onto "meaningful" low-dimensional space

- Classical techniques
- Principle Component Analysis—maximizes/preserves the variance
- Multidimensional Scaling—preserves inter-point distances

9

Concept of Dimensionality Reduction:

Embed data in a higher dimensional space to a lower dimensional manifold

Question: Are there projections that can produce this 2D mapping?

11

Typically, if 2-3 dimensions are enough to explain the variability in the data, we can do a visual analysis

[^0]
Overview

- Linear Dimensionality Reduction

 Principal Component Analysis (PCA)
Multidimensional Scaling (MDS)

- Applications of PCA

- Nonlinear Dimensionality Reduction (advanced topic, we'll cover briefly if time permits)
- Isomap
- Locally Linear Embedding
- Laplacian Embedding
- tSNE, Umap and other variants (Recent work)

References:

General Ref book: E. Alpaydın, "Introduction to Machine Learning", 2010, Chapter 6

- Tennenbaum\&Silva\&Langford
- Roweis\&Saul
[Locally Linear Embedding]
- Belkin\&Niyog
[Laplacian Eigenmaps]
13

Idea in Dimensionality Reduction:

Linear Approach:

want to find a mapping $\mathrm{y}=\mathrm{W}^{\top} \mathrm{x}$, with a linear transformation: W is kxd dimensions, $\mathrm{k} \ll \mathrm{d}$

$$
\mathbf{y}=\mathbf{W}^{T} \mathbf{x} \quad \mathbf{W}=\left[\begin{array}{llll}
\mathbf{w}_{1} & \mathbf{w}_{2} & \ldots & \mathbf{w}_{k}
\end{array}\right]
$$

i.e. write the new variable y (in a low dimension) as a linear combination of original variables:

$$
\begin{gathered}
y_{i}=w_{i 1} x_{1}+w_{i 2} x_{2}+\ldots+w_{i d} x_{d}, \quad i=1, \ldots, k \\
y_{i}=\mathbf{w}_{i}^{T} \mathbf{x}
\end{gathered}
$$

Note: Each x is d -dimensional vector, y is k -dimensional vector

Linear Dimensionality Reduction:

Derive on board

15

Overview of Principal Component Analysis

- Principal component analysis (PCA) is a classical way to reduce data dimensionality
- PCA projects high dimensional data to a lower dimension using certain eigen directions of the covariance matrix of the data.
- PCA projects the data in the least square sense (derivation is given in the slides later)
- PCA captures big (principal) variability in the data and ignores other small variabilities

Principal Component Analysis (PCA) $\mathbf{X}_{d \times N}=\left[\begin{array}{llll}\mathbf{x}_{1} & \mathbf{x}_{2} & \ldots & \mathbf{x}_{N}\end{array}\right]$

These are Centered Data Points, i.e. mean is subtracted from each data point:

$$
\mathbf{X}_{i} \rightarrow \mathbf{X}_{i}-\mathbf{X}_{\text {mean }}
$$

Calcuate Covariance matrix S of the data:

$$
\mathbf{S}=\mathbf{X} \mathbf{X}^{T}
$$

Perform Eigen Value Decomposition on Data Covariance matrix S, which is symmetric:

17

Principal Component Analysis (PCA)

Second eigenvector direction corresponding to second maximum eigenvalue (if it is 2D data, this is the only $2^{\text {nd }}$ eigenvalue)

\rightarrow Maximizing the data variance corresponds to

Finding the appropriate rotation of the canonical basis

(a)

Dimension 1

Note: Independent data: one can not predict r1 from r2
e.g. Plot of $x_{A}=$ distance vs. Humidity

Which of the below has low / high redundancy?

FIG. 3 A spectrum of possible redundancies in data from the two separate recordings r_{1} and r_{2} (e.g. x_{A}, y_{B}). The best-fit line $r_{2}=k r_{1}$ is indicated by the dashed line.

PCA: Least Mean Squares Derivation (You are not responsible from this derivation)

Let us say we have $\mathrm{x}_{\mathrm{i}}, \mathrm{i}=1 \ldots \mathrm{~N}$ data points in p dimensions (p is large)
If we want to represent the data set by a single point x_{0}, then

$$
\mathbf{x}_{0}=\mathbf{m}=\frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{i} \quad \sim \text { Sample mean }
$$

Can we justify this choice mathematically?

$$
J_{0}\left(\mathbf{x}_{0}\right)=\sum_{i=1}^{N}\left\|\mathbf{x}_{i}-\mathbf{x}_{0}\right\|^{2}
$$

It turns out that if you minimize J_{0} with respect to x_{0}, you get the above solution, i.e, the sample mean.

21

PCA: Mathematical Derivation

Representing the data set $\mathrm{x}_{\mathrm{i}}, \mathrm{i}=1 \ldots . \mathrm{N}$ by its mean is quite uninformative
So let's try to represent the data by a straight line of the form:

$$
\mathbf{x}=\mathbf{m}+a \mathbf{e}
$$

This is equation of a straight line that says that it passes through m
Here: e is a unit vector along the straight line

The training points projected on this straight line would be

$$
\mathbf{x}_{i}=\mathbf{m}+a_{i} \mathbf{e}, \quad i=1 \ldots N
$$

What are a_{i} 's in this equation? ->

PCA: Mathematical Derivation

Let's now determine a_{i} ' s

$$
J_{1}\left(a_{1}, a_{2}, \ldots, a_{N}, \mathbf{e}\right)=\sum_{i=1}^{N}\left\|\mathbf{m}+a_{i} \mathbf{e}-\mathbf{x}_{i}\right\|^{2}
$$

Expand

$$
\begin{aligned}
J_{1} & =\sum_{i=1}^{N} a_{i}^{2}\|\mathbf{e}\|^{2}-2 \sum_{i=1}^{N} a_{i} \mathbf{e}^{T}\left(\mathbf{x}_{i}-\mathbf{m}\right)+\sum_{i=1}^{N}\left\|\mathbf{x}_{i}-\mathbf{m}\right\|^{2} \\
& =\sum_{i=1}^{N} a_{i}^{2}-2 \sum_{i=1}^{N} a_{i} \mathbf{e}^{T}\left(\mathbf{x}_{i}-\mathbf{m}\right)+\sum_{i=1}^{N}\left\|\mathbf{x}_{i}-\mathbf{m}\right\|^{2}
\end{aligned}
$$

Partially differentiating with respect to a_{i} we get:

$$
a_{i}=\mathbf{e}^{T}\left(\mathbf{x}_{i}-\mathbf{m}\right)
$$

Plugging in this expression for a_{i} in J_{1} (3rd line above) we get:

$$
J_{1}(\mathbf{e})=-\sum_{i=1}^{N} \mathbf{e}^{T}\left(\mathbf{x}_{i}-\mathbf{m}\right)\left(\mathbf{x}_{i}-\mathbf{m}\right)^{T} \mathbf{e}+\sum_{i=1}^{N}\left\|\mathbf{x}_{i}-\mathbf{m}\right\|^{2}=-\mathbf{e}^{T} S \mathbf{e}+\sum_{i=1}^{N}\left\|\mathbf{x}_{i}-\mathbf{m}\right\|^{2}
$$

where $\quad S=\sum_{i=1}^{N}\left(\mathbf{x}_{i}-\mathbf{m}\right)\left(\mathbf{x}_{i}-\mathbf{m}\right)^{T} \quad$ is called the sample covariance matrix

PCA: Mathematical Derivation

So minimizing J_{1} is equivalent to maximizing:

$$
\mathbf{e}^{T} S \mathbf{e}
$$

Subject to the constraint that e is a unit vector:

$$
\mathbf{e}^{T} \mathbf{e}=1
$$

Use Lagrange multiplier method to form the objective function:

$$
\max _{\mathrm{e}} \quad \mathbf{e}^{T} S \mathbf{e}-\lambda\left(\mathbf{e}^{T} \mathbf{e}-1\right)
$$

Differentiate to obtain the equation:

$$
2 S \mathbf{e}-2 \lambda \mathbf{e}=\mathbf{0} \text { or } \mathbf{S e}=\lambda \mathbf{e}
$$

Solution is that e is the eigenvector of S corresponding to the largest eigenvalue!

PCA: Mathematical Derivation (Extra for interested)

The preceding analysis can be extended in the following way.

Instead of projecting the data points on to a straight line, we may
now want to project them on a d-dimensional plane of the form:

$$
\mathbf{x}=\mathbf{m}+a_{1} \mathbf{e}_{1}+\cdots+a_{d} \mathbf{e}_{d}
$$

d is much smaller than the original dimension p

In this case one can form the objective function:

$$
J_{d}=\sum_{i=1}^{N}\left\|\left(\mathbf{m}+\sum_{k=1}^{d} a_{i k} \mathbf{e}_{k}\right)-\mathbf{x}_{i}\right\|^{2}
$$

It can also be shown that the vectors $\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{d}$ are d eigenvectors corresponding to d largest eigenvalues of the scatter matrix = sample covariance

25

PCA: Summary

- Reduce the number of dimensions of the data points " x_{i} " to $k \ll d$, where d is the dimension of points in the original space
- Search in R^{d} for the direction of the unit vector v such that the projection of the set of N data points $x_{n}(n=1, \ldots N)$ to this direction leads to the scatter of N points with highest dispersion
- To keep 1 component, pick the one that best separates all the points, ie.has the highest variance: This is achieved by picking the eigenvector of largest eigenvalue
- You can keep d components by picking d eigenvectors that correspond to d largest eigen values.
E.g. Here $\mathrm{k}=1, \mathrm{~d}=2$

Q: How to pick k? ->

Figure 12.30 - Projecting the samples for the directions \mathbf{v}_{1} and \mathbf{v}_{2} : the dispersion of the proiected points is more favorable to an analusis for the vector \mathbf{v}_{1} than it is for \mathbf{v}_{2}

Explained Variance by the k eigenvalues out of d

Eigenvalues are sorted in descending order $\quad \lambda_{1}>\lambda_{2}>\ldots>\lambda_{k}$
Proportion (or percent) of variance $=100^{*} \frac{\lambda_{1}+\lambda_{2}+\ldots+\lambda_{k}}{\lambda_{1}+\lambda_{2}+\ldots+\lambda_{k}+\ldots+\lambda_{d}}$

Desired: \% variance is large while dimension k is much smaller than d

Curves with different
colors correspond to
different datasets

No of eigenvalues

PCA Applications

PCA

Assume we have a set of n feature vectors $\boldsymbol{x}_{i}(i=1, \ldots, n)$ in \mathbb{R}^{d}. Write

$$
\begin{aligned}
\boldsymbol{\mu} & =\frac{1}{n} \sum_{i} \boldsymbol{x}_{i} \\
\Sigma & =\frac{1}{n-1} \sum_{i}\left(\boldsymbol{x}_{i}-\boldsymbol{\mu}\right)\left(\boldsymbol{x}_{i}-\boldsymbol{\mu}\right)^{T}
\end{aligned}
$$

The unit eigenvectors of Σ - which we write as $v_{1}, v_{2}, \ldots, v_{d}$, where the order is given by the size of the eigenvalue and v_{1} has the largest eigenvalue - give a set of features with the following properties:

- They are Orthogonal.
- Projection onto the basis $\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}\right\}$ gives the k-dimensional set of linear features that preserves the most variance.

Algorithm 22.5: Principal components analysis identifies a collection of linear features that are independent, and capture as much variance as possible from a dataset.

Principal Component Analysis: Results

Source: IAPR PCA Lecture Notes

Principal Component Analysis: Results

THQ: Low-dimensional representation of data

Mean

EigenVector 1
EigenVector 2
EigenVector 3
EigenVector
EigenVector 5
EigenVector 6

Q: Suppose you want to represent the given original face image in a 3-dimensional (3D) space: what is the representation you would use to approximate the original image based on Principal Component Analysis? \rightarrow

33

Principal Component Analysis: Results

IAPR PCA Lecture Notes

35

36

Face Recognition

Figure 5: The original image (left) and the reconstructed image (middle)
after ten principal components have been employed. The right hand plot
shows how the error has decre
employed.

Figure 6: The original image (left) and the reconstructed image (middle) after one hundred principal components have been employed. The right hand plot shows how the error has decreased for this particular face over the one hundred PC's employed.

37

Difficulties with PCA

- Data may lie on more complex manifolds, e.g. the swiss roll, or the data on previous slide
- Projection may suppress important detail
- Smallest variance directions may not be unimportant
- The task we are interested in may not correlate with picking the largest variance directions
- Then you can resort to MDS or Nonlinear Dimensionality reduction techniques (not covered in this class) or other such more advanced techniques

39

Robust PCA

Normal PCA decomposition:

$$
X=L+E . \quad \begin{gathered}
\min _{L}\|X-L\|_{2}^{2} \\
\text { s.t. } \\
\operatorname{rank}(L) \leq k^{\prime},
\end{gathered}
$$

Robust PCA decomposition:

$$
X=L+S
$$

$\min _{L, S} \operatorname{rank}(L)+\lambda\|S\|_{0}$
s.t. $\|X-L-S\|_{2}^{2}=0$,
$\min _{L, S}\|L\|_{*}+\lambda\|S\|_{1}$
s.t. $\|X-L-S\|_{2}^{2}=0$,

Candès, Emmanuel J., et al. "Robust principal component analysis?." Journal of the ACM (JACM) 58.3 (2011): 1-37.

END OF LECTURE

Recall Learning objectives of Week : Students are able to:

LO5: Describe the idea behind dimensionality reduction and how it is used in data processing

LO6: Apply object and shape recognition approaches to problems in computer vision

Work on your last Homework Assignment and Your Final Project

41

Overview: you are responsible from only bold items below

- Linear Dimensionality Reduction

Principal Component Analysis (PCA)
Multidimensional Scaling (MDS)

- Applications of PCA
- Nonlinear Dimensionality Reduction
- Isomap (Tennenbaum\&Silva\&Langford)
- Locally Linear Embedding (Roweis\&Saul)
- Laplacian Eigenmaps (Belkin\&Niyogi)

EXTRA MATERIAL: Slides on/after this one are for your reference: You are not responsible in our class

- Linear Dimensionality Reduction

Principal Component Analysis (PCA)
Applications of PCA
------the end

Multidimensional Scaling (MDS)

- Nonlinear Dimensionality Reduction (advanced topic)
- Isomap
- Locally Linear Embedding
- Laplacian Embedding

43

Linear Dimensionality Reduction

- PCA
- Finds a low-dimensional embedding of the data points that best preserves their variance as measured in the high-dimensional input space

- MDS
- Finds an embedding that preserves the inter-point distances, similar to PCA when the points are given rather than distances between points.

Multidimensional Scaling (MDS)

- Here we are given pairwise distances instead of the actual data points
- First convert the pairwise distance matrix into the dot product matrix $\quad X X^{T}$
- Then, proceed similar to PCA

45

46

MDS is more general

- When the distances are Euclidean, MDS is equivalent to PCA
- In MDS: Instead of pairwise distances we can use pairwise "dissimilarities".

Eg. Face recognition:
May get some significant cognitive dimensions (not always true)
(c)

47

Nonlinear Dimensionality Reduction

- Many data sets contain essential nonlinear structures that can not be recovered by PCA and MDS
- May need to resort to some nonlinear dimensionality reduction approaches

49

Locally Linear Embedding

A Manifold is a topological space which is locally Euclidean."

53

Fit locally ...

Fig. 2. Steps of locally linear embedding: (1) Assign neighbors to each data point \bar{X}_{i} (for example by using the K nearest neighusing the K nearest neigh-
bors). (2) Compute the bors). (2) Compute the
weights $W_{\text {i }}$ that best linweights $W_{i j}$ that best linearly reconstruct \vec{X}_{i} from its neighbors, solving the constrained least-squares problem in Eq. 1. (3) Compute the low-dimensional embedding vectors \vec{Y}_{i} best reconstructed by $W_{i j}$, minimizing Eq. 2 by finding the smallest eigenmodes of the sparse symmetric matrix in Eq. 3. Although the weights $W_{i j}$ and vectors Y_{i} are computed by methods in linear algebra, the constraint that points are only reconstructed from neighbors can result in highly nonlinear embeddings.

54

55

Properties of Locally Linear Embedding Method (Not linear globally)

The same weights that reconstruct the data points in d-dimensions should reconstruct it in the manifold in k- dimensions- The weights characterize the intrinsic geometric properties of each neighborhoodThe weights that minimize the reconstruction errors are invariant to rotation, rescaling and translation of the data points
- Invariance to translation is enforced by adding the constraint that the weights sum to one

57

Short circuit problem

There is a free parameter:
How many neighbours?

- How to choose neighborhoods:

Susceptible to short-circuit errors
if neighborhood is larger than the folds in the manifold

If $n b h d$ is small, we get isolated patches

60

61

62

For your future reference: You are not responsible in this class from the following:

State-of-the Art Nonlinear Methods

- Tenenbaum et.al's Isomap Algorithm
- Global approach: Uses MDS with geodesic distances
- On a low dimensional embedding
- Nearby points should be nearby.
- Faraway points should be faraway.
- Roweis and Saul's Locally Linear Embedding Algorithm
- Local approach
- Nearby points nearby
- Belkin and Niyogi's Laplacian Eigenmaps for Dimensionality Reduction and Data Representation, "Neural Computation", 2003; 15(6):1373-1396
- More Recent ones:
- t-SNE, Maaten et al 2013
- UMAP, McInnes et al 2018

[^0]: Tennenbaum|Silva|Langford: "A Global Geometric Framework for Nonlinear Dimensionality Reduction (Isomap)"

