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BLG453E COMPUTER VISION
Fall 2021 Term

Week 13-14

Instructor:  Prof. Gözde ÜNAL

Teaching Assistant: Yusuf ŞAHİN

İstanbul Technical University
Computer Engineering Department
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Students will be able to:

1. Discuss the main problems of computer (artificial) vision, its uses and applications

2. Design and implement various image transforms: point-wise transforms, 
neighborhood operation-based spatial filters, and geometric transforms over images

3. Define and construct segmentation, feature extraction, and visual motion estimation 
algorithms to extract relevant information from images

4. Construct least squares solutions to problems in computer vision

5. Describe the idea behind dimensionality reduction and how it is used in data 
processing

6. Apply object and shape recognition approaches to problems in computer vision

Learning Outcomes of the Course
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At the end of Week: Students will be able to:

5.  Describe the idea behind dimensionality reduction and how it is used in data processing

Week : Dimensionality Reduction and its use in Computer Vision

3

Dimensionality Reduction and its use in Computer Vision

Dimension: no of variables measured on each observation 

Q: Are all the measured variables “important” for understanding the data?

Intuition: Not all the measured variables are “important” for understanding the 
underlying phenomena of interest

Pixel Values?
A 12MP image is 4000x3000x3(colour)
= 36,000,000D (Dimensional)
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Example Toy Problem
• Suppose, want to study motion of the ideal spring: “red” ball of 

mass m attached to it, stretch the spring, it will oscillate
indefinitely along the x-axis

qSay we record the ball’s 2D position from three cameras for 10 
mins at 120Hz, we have 10*60*120=72,000 measurements or
observations

5

Example Toy Problem

qIn fact, the spring travels in a straight line: àany spread 
deviating from the straight line must be noise

qHence, directions with largest variances in our measurement
vector space contains the dynamics of interest

Q: What is the data dimensionality ?  

6
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64x64 sized images à dimension = 4096
From face database: olivettifaces

Dimensionality Reduction

7

Dimensionality Reduction
§ Need to analyze large amounts multivariate data:

§ Human Faces, Medical images, speech signals
§ Linguistics: Syntactic language analysis
§ Climate and atmospheric patterns and data analysis
§ Gene Distributions

§ Difficult to visualize data in dimensions just greater than three.

§ Discover compact representations of high dimensional data.
§ Better Modeling and Recognition
§ Probably meaningful dimensions
§ Visualization
§ Compression

8
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Goal:
High-dimensional observations/data are projected onto 
“meaningful” low-dimensional space

• Classical techniques
– Principle Component Analysis—maximizes/preserves the 

variance
– Multidimensional Scaling—preserves inter-point distances

Dimensionality Reduction

9

Concept of Dimensionality Reduction:

Embed data in a higher dimensional space to a lower dimensional manifold

Project 

A letters Other letters

Question: Are there projections that can produce this 2D mapping?

10



24.01.2022

6

– Linear

Types of Structure in Multivariate Data

http://www.cse.wustl.edu/~kilian/research/manifold/manifold.html

Q: Can you unroll the non-linear data 
to a simpler structure?

– Non-Linear

11

For example:
• 64X64 Input Images 

form
4096-dimensional 
vectors

• Intrinsically, three 
dimensions is enough 
for presentations: 

• Two pose parameters 
and azimuthal lighting 
angle

Tennenbaum|Silva|Langford: “A Global Geometric Framework for Nonlinear Dimensionality Reduction (Isomap)”

Typically, if 2-3 dimensions are enough to explain the 
variability in the data, we can do a visual analysis

12
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Overview
• Linear Dimensionality Reduction

Principal Component Analysis (PCA)
Multidimensional Scaling (MDS)

• Applications of PCA
• Nonlinear Dimensionality Reduction ( advanced topic, 

we’ll cover briefly if time permits)
– Isomap
– Locally Linear Embedding
– Laplacian Embedding
– tSNE, Umap and other variants (Recent work)

References:
General Ref book: E. Alpaydın, “Introduction to Machine Learning”, 2010, Chapter 6

– Tennenbaum&Silva&Langford [Isomap]
– Roweis&Saul [Locally Linear Embedding]
– Belkin&Niyogi [Laplacian Eigenmaps]                   

13

Linear Approach:
want to find a mapping y = WT x,  with a linear transformation: 
W is kxd dimensions,  k << d

Idea in Dimensionality Reduction:

W = w1 w2 ... wk
⎡
⎣⎢

⎤
⎦⎥

i.e. write the new variable y (in a low dimension) as a linear combination of original variables:

yi = wi1x1 +wi2x2 + ...+wid xd , i =1,...,k

y =WTx

yi = wi
Tx

Note: Each  x is d-dimensional vector,  y is k-dimensional vector

14
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Derive on board

Linear Dimensionality Reduction:

15

• Principal component analysis (PCA) is a classical way to 
reduce data dimensionality

• PCA projects high dimensional data to a lower dimension 
using certain eigen directions of the covariance matrix of 
the data.

• PCA projects the data in the least square sense (derivation 
is given in the slides later)

• PCA captures big (principal) variability in the data and 
ignores other small variabilities

Overview of Principal Component Analysis

16
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Calcuate Covariance matrix S of the data:

Principal Component Analysis (PCA)

Xd×N = x1 x2 … xN
⎡
⎣⎢

⎤
⎦⎥

X i →X i −Xmean

These are Centered Data Points,  i.e. mean is subtracted from each data point: 

S = XXT

Perform Eigen Value Decomposition on Data Covariance matrix S, 
which is symmetric :

S =VΛVT

Eigenvector matrix
Diagonal Eigenvalue matrix

17

One Dimensional
Manifold

Principal Component Analysis (PCA)

First eigenvector direction corresponding to maximum eigenvalue

Second eigenvector direction corresponding to second maximum 
eigenvalue (if it is 2D data, this is the only 2nd eigenvalue)

18



24.01.2022

10

àMaximizing the data variance corresponds to
Finding the appropriate rotation of the canonical basis

19

Note: Independent data: one can not predict r1 from r2 
e.g. Plot of xA =distance vs. Humidity
Which of the below has low / high redundancy?

20
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PCA: Least Mean Squares Derivation
(You are not responsible from this derivation)
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Let us say we have xi, i=1…N data points in p dimensions (p is large)

If we want to represent the data set by a single point x0, then

Can we justify this choice mathematically?
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It turns out that if you minimize J0 with respect to x0, you get the above solution, 
i.e, the sample mean.

Sample mean

21

emx a+=

Representing the data set xi, i=1…N by its mean is quite uninformative

So let’s try to represent the data by a straight line of the form:

This is equation of a straight line that says that it passes through m

Here: e is a unit vector along the straight line

The training points projected on this straight line would be 

Niaii ...1, =+= emx

PCA: Mathematical Derivation

What are ai’s in this equation? ->

22
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Let’s now determine ai‘s

Partially differentiating with respect to ai we get:

Plugging in this expression for ai in J1 (3rd line above) we get: 

where

€ 
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T

i=1

N
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Expand

PCA: Mathematical Derivation

23

So minimizing J1 is equivalent to maximizing: ee ST

1=eeT

)1(max
e

-- eeee TT S l

Subject to the constraint that e is a unit vector:

Use Lagrange multiplier method to form the objective function:

Differentiate to obtain the equation: eSe0ee ll ==- orS 22

Solution is that e is the eigenvector of S corresponding to the largest 
eigenvalue!

PCA: Mathematical Derivation

24
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The preceding analysis can be extended in the following way.

Instead of projecting the data points on to a straight line, we may

now want to project them on a d-dimensional plane of the form:

d is much smaller than the original dimension p

In this case one can form the objective function: å å
= =
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It can also be shown that the vectors e1, e2, …, ed are d eigenvectors

corresponding to d largest eigenvalues of the scatter matrix = sample covariance

PCA: Mathematical Derivation (Extra for interested)
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PCA: Summary
• Reduce the number of dimensions of the data points “xi”  to k << d, where d is the

dimension of points in the original space
• Search in Rd for the direction of the unit vector v such that the projection of the set 

of N data points xn (n=1,...N) to this direction leads to the scatter of N points with
highest dispersion

• To keep 1 component, pick the one that best separates all the points, ie.has the
highest variance: This is achieved by picking the eigenvector of largest eigenvalue

• You can keep d components by picking d eigenvectors that correspond to d largest
eigen values.

E.g. Here 
k=1, d=2

Q: How to pick k? ->

26
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Explained Variance by the k eigenvalues out of d

Eigenvalues are sorted in descending order

Proportion (or percent) of variance=100* λ1 +λ2 +...+λk
λ1 +λ2 +...+λk +...+λd

Desired: % variance is large while dimension k is much smaller than d

No of eigenvalues

Curves with different 
colors correspond to 
different datasets

λ1 > λ2 > ...> λk

Q: Which dataset 
(Blue, Red, or Green) 
can achieve higher 
compression? i.e. 
lower k

27

PCA Applications

28
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Computer Vision - A Modern Approach
Slides by D.A. Forsyth

PCA

Orthogonal.

29

Source: IAPR   PCA Lecture Notes

Pre-alignment 
is important!

30
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Source: IAPR   PCA Lecture Notes

Eigen

Data

k

image:

N: # data points 
Xi that are all 
aligned

k

k

k k

31

IAPR   PCA Lecture Notes

32
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THQ: Low-dimensional representation of data
Original Mean

EigenVector 1 EigenVector 2 EigenVector 3 EigenVector 4 EigenVector 5 EigenVector 6

Q: Suppose you want to represent the given original face image in a 3-dimensional (3D) 
space: what is the representation you would use to approximate the original image based 
on Principal Component Analysis?  à

33

IAPR   PCA Lecture Notes

34
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X i = X +WYi

t j =Wj
T (T−X)

yi: coordinates of Yi in 
the reduced space

k

d d

Yi

W = B1 B2 ... Bk
⎡
⎣⎢

⎤
⎦⎥ : Linear transform matrix

35

Face Recognition databases: another example

64x64 sized images à dimension = 4096
From face database: olivettifaces

36
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Face Recognition

37

PCA will give a very poor representation of 
this data set

PCA gives a good representation of this data 
set

38
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Difficulties with PCA

• Data may lie on more complex manifolds, e.g. the swiss
roll, or the data on previous slide

• Projection may suppress important detail
– Smallest variance directions may not be unimportant
– The task we are interested in may not correlate with 

picking the largest variance directions

• Then you can resort to MDS or Nonlinear
Dimensionality reduction techniques (not covered in 
this class) or other such more advanced techniques

39

Robust PCA

Normal PCA decomposition:

Robust PCA  decomposition:

40

FreeText
Candès, Emmanuel J., et al. "Robust principal component analysis?." Journal of the ACM (JACM) 58.3 (2011): 1-37.
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END OF LECTURE

Recall Learning objectives of Week : Students are able to:

LO5: Describe the idea behind dimensionality reduction and how it 
is used in data processing

LO6:  Apply object and shape recognition approaches to problems 
in computer vision

Work on your last Homework Assignment and Your Final 
Project

41

Overview: you are responsible from only bold 
items below

• Linear Dimensionality Reduction

Principal Component Analysis (PCA)
Multidimensional Scaling (MDS)

• Applications of PCA

• Nonlinear Dimensionality Reduction
– Isomap (Tennenbaum&Silva&Langford)
– Locally Linear Embedding (Roweis&Saul)
– Laplacian Eigenmaps (Belkin&Niyogi )

42
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EXTRA MATERIAL: Slides on/after this one are 
for your reference: You are not responsible in 

our class

• Linear Dimensionality Reduction
Principal Component Analysis (PCA)

Applications of PCA

-----the end

Multidimensional Scaling (MDS)

• Nonlinear Dimensionality Reduction ( advanced topic)
– Isomap
– Locally Linear Embedding
– Laplacian Embedding

43

Linear Dimensionality Reduction

• PCA
– Finds a low-dimensional embedding of the data points that best 

preserves their variance as measured in the high-dimensional 
input space

• MDS
– Finds an embedding that preserves the inter-point distances, 

similar to PCA when the points are given rather than distances 
between points.

44
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• Here we are given pairwise distances instead of the 
actual data points

– First convert the pairwise distance 
matrix into the 
dot product matrix

– Then, proceed similar to PCA

Multidimensional Scaling (MDS)

45

MDS: Example • Given road travel distances between 
cities, we try to get an 
approximation to the map 

• Map deviates from bird-flight path 
(Euclidean distance) due to 
geographical obstacles (lakes, 
mountains ..)

46
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• When the distances are 
Euclidean, MDS is 
equivalent to PCA

• In MDS: Instead of 
pairwise distances we 
can use pairwise 
“dissimilarities”.

Eg. Face recognition:
May get some significant 

cognitive dimensions 
(not always true)

MDS is more general

47

Nonlinear Dimensionality Reduction 

• Many data sets contain essential nonlinear structures 
that can not be recovered by PCA and MDS

• May need to resort to some nonlinear dimensionality 
reduction approaches

48
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To preserve structure, preserve the geodesic distance and not the 
Euclidean distance

49
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A Manifold is a topological space which is locally Euclidean.”

Fit Locally , Think Globally

Locally Linear Embedding

53

Fit locally …

Nonlinear Dimensionality Reduction by Locally Linear Embedding, Sam T. Roweis, et al. Science 290, 2323 (2000);

54



24.01.2022

27

Think 
Globally…

55

qThe same weights that reconstruct the data points in 
d-dimensions should reconstruct it in the manifold in 
k- dimensions
l The weights characterize the intrinsic geometric properties 

of each neighborhood

qThe weights that minimize the reconstruction errors 
are invariant to rotation, rescaling and translation of 
the data points
l Invariance to translation is enforced by adding the 

constraint that the weights sum to one

Properties of Locally Linear Embedding Method 
(Not linear globally)

56
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Examples : 2-D embedding of faces

57
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There is a free parameter:
How many neighbours?

• How to choose neighborhoods:

Susceptible to short-circuit errors 

if neighborhood is larger than the folds in 
the manifold

If nbhd is small, we get isolated patches

Short circuit problem

59
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Example applications
Interpolations between distant points in the low-

dimensional coordinate space.

62
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• Tenenbaum et.al’s Isomap Algorithm
– Global approach: Uses MDS with geodesic distances
– On a low dimensional embedding

• Nearby points should be nearby.
• Faraway points should be faraway.

• Roweis and Saul’s Locally Linear Embedding Algorithm
– Local approach

• Nearby points nearby
• Belkin and Niyogi’s Laplacian Eigenmaps for Dimensionality 

Reduction and Data Representation,  “Neural Computation”, 
2003;  15(6):1373-1396

• More Recent ones:
• t-SNE, Maaten et al 2013
• UMAP, McInnes et al 2018

State-of-the Art Nonlinear Methods
For your future reference: You are not responsible in this class from the following:
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