
25.10.2021

1

BLG453E COMPUTER VISION
Fall 2021 Term

Week 3

Instructor: Prof. Gözde ÜNAL

Teaching Assistant: Yusuf H. ŞAHİN

Istanbul Technical University
Computer Engineering Department

1

Students will be able to:

1. Discuss the main problems of computer (artificial) vision, its uses and applications

2. Design and implement various image transforms: point-wise transforms,
neighborhood operation-based spatial filters, and geometric transforms over images

3. Define and construct segmentation, feature extraction, and visual motion estimation
algorithms to extract relevant information from images

4. Construct least squares solutions to problems in computer vision

5. Describe the idea behind dimensionality reduction and how it is used in data
processing

6. Apply object and shape recognition approaches to problems in computer vision

Learning Outcomes of the Course

2

25.10.2021

2

At the end of Week 3: Students will be able to:

2. Design and implement various image transforms:
geometric transforms over images, point-wise transforms, neighborhood
operation-based spatial filters

Week 3: LOs: Geometric Image transforms

3

Talos I-F., Archip N. Volumetric Non-Rigid Registration for MRI-guided Brain Tumor Surgery. SPL 2007 Aug

Image Registration Problem

4

25.10.2021

3

5

Geometric transformations
Geometric transformations change the spatial position of pixels in the image.
They are also known as image warps. Geometric transformations have a
variety of practical uses, including
• Bringing multiple images into the same coordinate system, e.g.

Registration, Homography Estimation (related to 3D Vision)
• Removing distortion
• Simplifying further processing, eg. In stereo matching
• Image morphing, warping, etc.

Distorted image Corrected image

6

25.10.2021

4

Picture: Courtesy M. Milanova, University of Arkansas at Little Rock

Geometric transformations

In a geometric transformation, the positions of pixels in the image is transformed.
Mathematically, this is expressed (in a general form) as

T(x): a function
that maps x to x’

x is the position of the pixel in the
distorted image

x’ is the position of the pixel in
the corrected image

then map the images J(x’) = I (x)

Map your coordinates first

7

• Move pixels of image by
1. Mapping
2. Resampling

Image Warping (Geometric Transformation)

Source Image Destination Image

8

25.10.2021

5

• Move pixels of image by
1. Mapping
2. Resampling

Image Warping (Geometric Transformation)

Source Image Destination Image

9

1. Define transformation
– Describe the destination (x, y) for every location (u, v) in the

source image (or vice-versa, if invertible transformation)

Coordinate Mapping

Im = cv2.imread("sample1.jpg", -1)
[h, w, dim] = Im.shape
centerx = w // 2
centery = h // 2
for j in range(0, h):

for k in range(0, w):
angle = rotation_amount * np.exp((-1 * ((k - centerx)**2 + (j - centery)**2)) / effect**2)
rot_mat = np.asarray([[np.cos(angle), np.sin(angle)], [-1 * np.sin(angle), np.cos(angle)]])
coord = np.matmul(rot_mat, np.asarray([k - centerx, j - centery]))
coord += center_of_image

import cv2 # OpenCV library is imported to program

Question/Exercise:
Which transform
effect is given here?
Code and observe

10

25.10.2021

6

An image warp is normally implemented as follows: for
every pixel position x,y in the destination image:

Using T-1, determine (u,v), where (x,y) came
from in the source image

Interpolate a value from source image I(u,v)
to produce destination image J(x,y)
end

Picture: Courtesy M. Milanova, University of Arkansas at Little Rock

11

• Scale by factor

x = factor * u
y = factor * v

Example Coordinate Mapping: Scaling

Im = cv2.imread("sample1.jpg", -1)
[h, w, dim] = Im.shape
angle = np.pi/6
for j in range(0, h):

for k in range(0, w):
scale_mat = np.eye(2) * 0.8
scale_mat = np.linalg.inv(scale_mat)
coord = np.matmul(scale_mat, np.asarray([k - centerx, j - centery]))
coord += center_of_image

12

25.10.2021

7

• Rotate by q degrees

x = ucosq - vsinq
y = usinq + vcosq

Example Coordinate Mapping

Im = cv2.imread("sample1.jpg", -1)
[h, w, dim] = Im.shape
angle = np.pi/6
center of rotation
centerx = w // 2
centery = h // 2
for j in range(0, h):

for k in range(0, w):
rot_mat = np.asarray([[np.cos(angle), np.sin(angle)], [-1 * np.sin(angle), np.cos(angle)]])
coord = np.matmul(rot_mat, np.asarray([k - centerx, j - centery]))
coord += center_of_image

13

• Any function of u and v
x = fx(u, v)
y = fy(u, v)

A general Coordinate Mapping

14

25.10.2021

8

Geometric Transform: Forward Mapping

• Iterate over source image

Picture: Prof. M. Milanova, University of Arkansas at Little Rock

Some destination pixels may not be covered
Many source pixels can map to the same destination pixel

15

Backward Mapping

Iterate over destination image to map it by the inverse
(backward) transformation
- We must resample source image

Rotate by 30o

Forward mapping was rotation by: -30o

This is the inverse mapping for that

16

25.10.2021

9

We will prefer backwards, rather than using a (forward) mapping T to transform
pixels from the distorted image to the corrected image, we use an (inverse)
transform T-1.

ð Using an inverse mapping ensures all the pixels in the corrected image will be
filled. However, it’s necessary to interpolate pixels from the distorted image.

Geometric transformations

T Forward mapping may
result in gaps

T-1 Inverse mapping
ensures no gaps

Slide: Prof. G. Slabaugh, City U. London

17

Forward Mapping / Warp (NOT USED much in practice)

R. Szeliski, Computer Vision Book, 2010

(traverse source image pixels)

x

x’

x’ = f(x) is real valued, there will be round-off errors, and missing grid points.

18

25.10.2021

10

Backward Mapping

The inverse transform maps an integer-coordinate point (x’,y’) in I’ into a real
coordinate point (x,y) in I

Use the colors of neighboring integer coordinate points in I to estimate I(p)
(e.g. use bilinear interpolation: we will learn in the coming slides)

Then: I '(x ', y ') = I (x, y)

Advantage: No round-off error

x = h−1(x ')

f −1

I '(x ', y ') = I (h−1(x ', y ')) = I (x, y)Equivalently:

h−1

19

Backward Mapping

The inverse transform maps an integer-coordinate point (x’,y’) in I’ into a real
coordinate point (x,y) in I

x = h−1(x ')

f −1h−1

Im = cv2.imread("sample1.jpg", -1)
[h, w, dim] = Im.shape
angle = np.pi/6
for j in range(0, h):

for k in range(0, w):
rot_mat = np.asarray([[np.cos(angle), np.sin(angle)], [-1 * np.sin(angle), np.cos(angle)]])
inv_rot_mat = np.linalg.inv(rot_mat)
coord = np.matmul(inv_rot_mat, np.asarray([k - centerx, j - centery]))
coord += center_of_image

x’

x

20

25.10.2021

11

Geometric Image Transform Implementation

• backward mapping
for (int u = 0; u < umax; u++) {

for (int v = 0; v < vmax; v++) {
float x = Tx

-1(u, v);
float y = Ty

-1(u, v);
J(u, v) = resample_I(x, y); // interpolation over source image intensity values

}
}

Destination Image Source Image

T −1

Note that
backward
mapping
is used

T −1

21

Gray level interpolation
Through a geometric mapping, pixels in image f can map to positions between pixels in image g

T maps an integer coordinate point (u,v) in J to a real-coordinate point (xf,yf) in I.

T −1

J (u,v)=I (x f , y f) ?

Nearest Neighbor interpolation: Gray level of the pixel (u,v) is taken to be that of the
nearest pixel location to (xf,yf)

Bilinear Interpolation: an extension of linear interpolation for interpolating functions of
two variables on a regular grid.
The key idea is to perform linear interpolation first in one direction, and then again in the
other direction. Next page

We study 2 types of interpolation techniques:

x f , y f

22

25.10.2021

12

Gray level interpolation
Through a geometric mapping, pixels in image f can map to positions between pixels in image g

T maps an integer coordinate point (u,v) in J to a real-coordinate point (xf,yf) in I.

Use the colors (or gray values) of neighboring integer-coordinate points in I to estimate
I(xf,yf)

T −1

J (u,v)=I (x f , y f)Then:

x f , y f

23

GRAY LEVEL INTERPOLATION

1. Nearest Neighbor interpolation:

2. Bilinear Interpolation:

J (u,v) = I (x f , y f) = I (x, y)

Floating point coordinate values

Nearest Integer coordinate values
(rounded)

I (x f , y f) = (1− a)(1−b)I (x, y)+ a (1−b)I (x +1, y)

+(1− a)b I (x, y +1)+ a b I (x +1, y +1)

(x f , y f)

a

b

(x, y) (x +1, y)

(x +1, y +1)(x, y +1)

Advantage: round-off error avoided

(x f , y f)

24

25.10.2021

13

GRAY LEVEL INTERPOLATION

2. Bilinear Interpolation:

I (x f , y f) = (1− a)(1−b)I (x, y)+ a (1−b)I (x +1, y)

+(1− a)b I (x, y +1)+ a b I (x +1, y +1)

Advantage: round-off error avoided

equation (*)

25

I(x,y) = ax + by + cxy + d

A bilinear function: is linear in both of
its arguments, i.e. x and y above;
its four coefficients, a through d, are to
be chosen so that I(x,y) fits the known
values at the four corners.

1. Linearly interpolate between the upper two points to establish the
value of:

I(x,0) = I(0,0) + x [I(1,0) - I(0,0)]

2. Similarly, for the lower two points

I(x,1) = I(0,1) + x [I(1,1) - I(0,1)]

Bilinear Interpolation Details: (You are not responsible from
the derivation in this and next slide)

26

25.10.2021

14

3. Linearly interpolate vertically to determine the value of:

I(x,y) = I(x,0) + y [I(x,1) - I(x,0)]

4. Substituting all,

I(x,y) = [I(1,0) –I(0,0)]x + [I(0,1) - I(0,0)]y
+ [I(1,1)+I(0,0)-I(0,1)-I(1,0)]xy +I(0,0)

which is a bilinear equation.

Note: This is equal to the equation (*) two slides ago.

27

28

25.10.2021

15

Image interpolation methods: the original
image (top left) was enlarged five times using
three different interpolation techniques—
nearest neighbor (top right), bilinear (bottom
left), and bicubic (bottom right).

Usually: Higher order
interpolation than bilinear is
NOT needed!

29

Specify value of your function at the boundaries, two ways:

1. Pad zeros or a constant value at boundaries

2. Wrap your image around, i.e. Periodically replicate

Interpolation: What to do at Image Grid Boundaries?

30

25.10.2021

16

Next: PARAMETRIC GEOMETRIC TRANSFORMS

THQ

U= X – 20 ; V = Y -30

U,V X,Y

X= U + 20; V = Y + 30

31

TRANSLATION

U= X + X0

V= Y + Y0

ú
ú
ú

û

ù

ê
ê
ê

ë

é

ú
ú
ú

û

ù

ê
ê
ê

ë

é
=

ú
ú
ú

û

ù

ê
ê
ê

ë

é

1100
10
01

1
0

0

Y
X

Y
X

V
U

Using Homogeneous coordinates makes it possible for these
geometric transforms (e.g. translation or affine) to be represented
as matrix vector multiplication, i.e. a linear transformation

Homogeneous
coordinates

32

25.10.2021

17

In Homogeneous coordinates:
ú
ú
ú

û

ù

ê
ê
ê

ë

é
=
1
V
U

u
ú
ú
ú

û

ù

ê
ê
ê

ë

é
=
1
Y
X

x

TRANSLATION

u =Tx

height, width=I.shape
i, j = np.meshgrid(range(height), range(width), indexing='ij')
i = i.reshape((1, -1))
j = j.reshape((1, -1))
onesCol = np.ones((1, i.shape[1]))
coords = np.concatenate((i, j, onesCol), axis=0)
X0 = 10
Y0 = 20
new_coords = np.matmul(np.asarray([[1, 0, X0],

[0, 1, Y0],
[0, 0, 1]]), coords)

ú
ú
ú

û

ù

ê
ê
ê

ë

é
=

100
10
01

0

0

Y
X

T

ú
ú
ú

û

ù

ê
ê
ê

ë

é

ú
ú
ú

û

ù

ê
ê
ê

ë

é
=

ú
ú
ú

û

ù

ê
ê
ê

ë

é

1100
10
01

1
0

0

y
x

y
x

v
u

33

SCALING

e.g. s = 0.8

ú
ú
ú

û

ù

ê
ê
ê

ë

é
=

100
00
00

Y

X

S
S

S

non-uniform scaling
This is more general

U =1/ s* X
V =1/ s*Y

new_coords = np.matmul(np.asarray([[0.8, 0, 0],
[0, 0.8, 0],
[0, 0, 1]]), coords)

ú
ú
ú

û

ù

ê
ê
ê

ë

é
=

100
00
00

s
s

S

34

25.10.2021

18

Question
Consider the transformation

unit square

How does it transform the
unit square?

ú
ú
ú

û

ù

ê
ê
ê

ë

é

100
220
202

35

ú
ú
ú

û

ù

ê
ê
ê

ë

é -
=

100
0cossin
0sincos

qq
qq

qR

2D Rotation requires 1 rotation parameter since it is only in the image plane.

ROTATION

θ = π / 4
Q: How many parameters ?

Above example Q: Center of rotation? =Image Center

Important: Need to specify the Center of Rotation.

36

25.10.2021

19

Let u=U(x,y) = x cos (q) – y sin (q)
v=V(x,y) = x sin (q) + y cos (q)

produces a clockwise rotation through an angle q about the origin.

ú
ú
ú

û

ù

ê
ê
ê

ë

é

ú
ú
ú

û

ù

ê
ê
ê

ë

é -
=

ú
ú
ú

û

ù

ê
ê
ê

ë

é

1100
0)cos()sin(
0)sin()cos(

1
y
x

v
u

qq
qq

In homogeneous coordinates:

new_coords = np.matmul(np.asarray([[np.cos(angle), -1 * np.sin(angle), 0],
[np.sin(angle), np.cos(angle), 0],
[0, 0, 1]]), coords)

u = u’ + x0
v = v’ + y0

x’ = x – x0; y’ = y– y0;
u’= x cos (q) – y sin (q)
V’= x sin (q) + y cos (q)

Add back the center of rotation à

Or Rotate around a given center of rotation (x0,y0):

37

ú
ú
ú

û

ù

ê
ê
ê

ë

é
--

=-

100
0)cos()sin(
0)sin()cos(

1 qq
qq

qR

How to compute INVERSE TRANSFORMATION?

ú
ú
ú

û

ù

ê
ê
ê

ë

é
-
-

=-

100
10
01

0

0
1 Y

X
T

ú
ú
ú

û

ù

ê
ê
ê

ë

é
=-

100
0/10
00/1

1
Y

X

S
S

S

Compute inverse of the transformation matrix:

38

25.10.2021

20

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é

-
=

1 0 0 0
0cossin0
0sincos0
0001

aa
aa

aR

Rotation of a 3D point about each of the coordinate axes. Angles are measured
clockwise when looking along the rotation axis toward the origin.

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é -

=

1 0 0 0
0cos0sin
0010
0sin0cos

bb

bb

bR

ú
ú
ú
ú

û

ù

ê
ê
ê
ê

ë

é
-

=

1 0 0 0
0100
00cossin
00sincos

qq
qq

qR

3D ROTATION

39

Answer: The image will be shrunk by the factors c in the x-direction
and d in the y-direction
The origin (typically the upper left-hand corner) remains stationary.

ú
ú
ú

û

ù

ê
ê
ê

ë

é

ú
ú
ú

û

ù

ê
ê
ê

ë

é
=

ú
ú
ú

û

ù

ê
ê
ê

ë

é

1100
00
00

1
y
x

d
c

v
u

What happens to the image by the above transform?
Assume c, d > 1

THQ

Q: What about c,d < 0 ? What is the effect?

40

25.10.2021

21

AFFINE TRANSFORM

ú
ú
ú

û

ù

ê
ê
ê

ë

é
=

100
0
0

2221

1211

aa
aa

A with zero translation

41

Affine transformation

An affine transformation takes the form

In OpenCV, you apply the transformation to an image using
cv2.warpAffine

42

25.10.2021

22

Special cases

There are several common special cases, including

Translation

Rotation

Scaling

43

Affine transformation
Another special case includes skew

s=0.5

44

25.10.2021

23

Question
Consider the transformation

How does it transform
the image?

ú
ú
ú

û

ù

ê
ê
ê

ë

é

100
015.0
001

ú
ú
ú

û

ù

ê
ê
ê

ë

é-

100
015.0
001

What about ?

45

Example

Slide: Prof. G. Slabaugh, City U. London

I=cv2.imread("LicensePlate.png") #read image
cv2.imshow("License Plate Original", I)

height,width=I.shape[:2]

Rotate clockwise 15 degrees to align base
M= cv2.getRotationMatrix2D((width/2,height/2),-15,1)
J1 = cv2.warpAffine(I,M,(width,height))
cv2.imshow("License Plate Rotated", J1)

Now apply a skew
tform=np.float32([[1,0.3,0],[0,1,0]])
height,width=J1.shape[:2]
J2=np.zeros([h,w], dtype=np.uint8)
J2 = cv2.warpAffine(J1,tform,(width,height))
cv2.imshow("License Plate Skewed", J2)

cv2.waitKey(0)

46

25.10.2021

24

Estimation of Affine Transform
through correspondences

When the affine transformation is not known in advance, we can estimate it.

p1

p2

p3

p4
q1

q2

q3

q4

This can be achieved by finding at least three correspondences, or matching
points.

For example, we could say p1 corresponds to q1. What we would like to do is
estimate the affine transformation that best aligns the correspondences.

Estimation here means: to determine the six coefficients in the A matrix.

Q: At least how many point correspondences do you need ?

47

Estimation of Affine Transform
through correspondences

p1

p2

p3

p4
q1

q2

q3

q4

p1 =[18, 47]T
p2 =[15, 100]T
p3 =[178, 6]T
p4 =[173, 53]T

q1 =[48, 50]T
q2 =[48, 100]T
q3 =[212, 50]T
q4 =[212, 100]T

Say you pick 4 point correspondences:

Next, set up the equations

48

25.10.2021

25

Affine Transform p =
u
v
1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

q =
x
y
1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

49

Estimation through correspondences
Noting that

If we have three correspondences we can write

Or which can be solved as

This gives the coefficients needed for the affine transformation. What can you
do if you have more than three correspondences?

Use the pseudo-inverse instead of the inverse!

50

25.10.2021

26

Estimation through correspondences

51

Affine transform estimation

Solve by constructing a linear system of equations

52

25.10.2021

27

53

Least Squares Estimation

54

25.10.2021

28

Projective transformation
Images normally acquired by photographic cameras are formed by
perspective projection. If we view a planar surface not parallel to the image
plane, then an affine transformation will not map the shape to a rectangle.

Instead, we must use a projective transformation of the form

To estimate a projective transformation, at
least four 2D correspondences are needed
(due to the eight unknowns).

58

Projective transformation

Example: Find the best fitting warp to transform the game area to a given
rectangle

original affine projective

Slide: Prof. G. Slabaugh, City U. London

59

25.10.2021

29

Projective (Perspective)
Transformation

60

Hierarchy of 2D transformations

ú
ú
ú

û

ù

ê
ê
ê

ë

é

100
2221

1211

y

x

taa
taa

ú
ú
ú

û

ù

ê
ê
ê

ë

é

100
2221

1211

y

x

tsrsr
tsrsr

ú
ú
ú

û

ù

ê
ê
ê

ë

é

13231

232221

131211

pp
ppp
ppp

ú
ú
ú

û

ù

ê
ê
ê

ë

é

100
2221

1211

y

x

trr
trr

Projective
8 DOF

Affine
6 DOF

Similarity
4 DOF

Rigid-body
3 DOF

Collinearity

Parallellism of lines

Ratios of lengths, angles

Lengths, areas

PreservesTransformed
squares

Slide source: Marc Pollefeys

61

25.10.2021

30

HIERARCHY OF TRANSFORMATIONS

• Euclidean

• Similarity

• Affine

• Projective

62

Other transformations

Other transformations are possible, including those that do not involve a
matrix, and instead a more general function that transforms pixel locations.
What’s needed is a way to describe the transformation

Examples of other common transformations include

Radial lens distortion Non-rigid transformation

63

25.10.2021

31

similarity transform

affine transform

projective transform

elastic transform

Example Image Transforms

64

Four steps of image registration:

Top row—feature detection (corners were used as
the features in this case).

Middle row—feature matching by invariant
descriptors (the corresponding pairs are marked
by numbers).

Bottom left—transform model estimation
exploiting the established correspondence.

Bottom right—image re-sampling and
transformation using appropriate interpolation
technique.

IMAGE REGISTRATION PROBLEM

Image 1 Image 2

65

25.10.2021

32

Correspondence Problem in Image Registration

For each point in one image, find the
corresponding point in the other image.
Quite a challenging problem!

In this course: we will assume that we have the
correspondences between control points

66

GEOMETRIC Transformations - Summary

Geometric operations change the spatial relationships among the
objects in an image.

1. Define the spatial (geometric) transformation – moving each
pixel from its initial to final position in the image

2. Gray-level interpolation (in general for a backward mapping)
integer u,v positions on the output image map to fractional
(noninteger) positions in the input image

69

25.10.2021

33

Towards more General Spatial Transformations

J(u,v) = I(x,y) where x=a(u,v); y =b(u,v)

71

Towards more General Transformations

72

25.10.2021

34

Specification by Control Points
J(u,v) = I(x,y) = I[a(u,v),b(u,v)]

Specify the spatial transformation as displacement values
for selected control points in the image: x=a(u,v); y=b(u,v)

1. Determine a set of suitable control points, from which the
transform parameters (e.g. here polynomial) are determined.

2. Apply the actual correction to the image data using this transform
(by finding all corresponding pixel locations in the two images)

3. Remap intensity data (i.e. interpolate)

73

Polynomial Transformation

e.g. write 3rd order, n=3
n n-k

=0 =0
n n-k

=0 =0

74

25.10.2021

35

A: 12 coefficients need to be estimated, therefore at least six points are needed.

Q: how many points correspondences are needed to estimate the above transform?

75

Some Applications of Geometric Operations

• Image Warping

• Image morphing

• Geometric calibration

• Image Rectification

76

25.10.2021

36

Image Warping

Goal: Warp a given image to a new purposefully distorted image

Given a source image I, and the correspondences between original
control points pi in I and desired destination points qi i=1,...,n

Generate a Warped image J such that

J (qi) = I (pi) ∀i

The idea of a correspondence can be given either by a mapping function f, or manually
selected control point pairs.

77

Picture: L.W. Kheng, National University of Singapore

78

25.10.2021

37

79

Warping and Morphing

Warping

• Single object

• Specification of original and deformed states

Morphing

• Two objects

• Specification of initial and final states

80

25.10.2021

38

Image Morphing

0 ≤ t ≤1
Basic steps:
1. Select the corresponding points pi in I and qi in J.
2. The corresponding point ri(t) in M(t) lies in between pi and qi,

e.g. ri (t) = (1− t)pi + t qi
3. Compute mapping function between I and M(t) and between J
and M(t).
4. Use the mapping functions to warp I to I(t) and J to J(t)
5. Blend I(t) and J(t): M (t) = (1− t)I (t)+ t J (t)

Given two images I
and J, generate a
sequence of images
M(t), that changes
smoothly from I to J.

81

Image Morphing

0 ≤ t ≤1

Given two images I
and J, generate a
sequence of images
M(t), that changes
smoothly from I to J.

82

25.10.2021

39

Image Morphing

6. Repeat for different values of t from 0 to 1.
When the sequence is played, ri(t) moves from pi to qi, and M(t)
changes from I to J

ri (t) = (1− t)pi + t qi
M (t) = (1− t)I (t)+ t J (t)

Szeliski Computer Vision Book 2010

83

Image Morphing

• https://paulbakaus.com/wp-content/uploads/2009/10/bush-obama-morphing.jpg

84

25.10.2021

40

• Warping: You need to align features in images

Image Morphing involves Warping as a step

85

Warping and Morphing
http://www-2.cs.cmu.edu/~seitz/vmorph/vmorph.html

http://www.css.tayloru.edu/~btoll/s99/424/res/model/morph/morph.html

Commercial software such as : http://www.fantamorph.com/

More references on Image morphing:

* G. Wolberg, “Digital Image Warping”, IEEE Computer Soc. Press 1990.
* S-Y.Lee and S.Y. Shin, “Warp generation and transition control in image morphing”, In
Interactive Computer Animation, Prentice Hall, 1996
* Line Segment based morphing in the paper:
Beier, T. and Neely, S. (1992). “Feature-based image metamorphosis”, Computer
Graphics (SIGGRAPH '92), 26(2):35-42.

87

http://www-2.cs.cmu.edu/~seitz/vmorph/vmorph.html
http://www.css.tayloru.edu/~btoll/s99/424/res/model/morph/morph.html
http://www.fantamorph.com/

25.10.2021

41

The desired spatial transformation is that which makes the grid
pattern rectangular again, thereby correcting the distortion introduced
by the camera.

GEOMETRIC CORRECTION

88

GEOMETRIC CORRECTION / Camera Calibration

89

25.10.2021

42

To achieve geometric distortion correction, two entities are required:

1. A mathematical model that describes the distortion

2. A set of corresponding image points of the form (x,y)(x_d,y_d)
where

• the 2 x 1 vector (x,y) represents location of the undistorted
image plane point

• The (x_d,y_d) represents the vector location of the distorted point

90

• Lens Distortion: A polynomial warp example

Simple Radial distortion model:

x = xd (1+ a1r
2 + a2r

4)

y = yd (1+ a1r
2 + a2r

4)

r2 = (xd − xc)
2 + (yd − yc)

2

(xc , yc) : Center of radial distortion

where a_1 and a_2 are the parameters to be estimated, and:

: r: distance from center of radial
distortion = image center usually

91

25.10.2021

43

92

Reading Assignments:

Study this week’s topics from your lecture notes

END OF LECTURE

Recall Learning Objective (LO) for Week 3: Students will be able to:

LO2. Design and implement various image transforms: geometric
image transforms

Next assignment: work on geometric xforms

NEXT TIME: We will study Neighborhood Image Processing, Spatial Filtering

93

