BLG453E COMPUTER VISION
Fall 2021 Term
Week 4-5

Istanbul Technical University
Computer Engineering Department

Instructor: Prof. Gozde UNAL

Teaching Assistant: Yusuf Hiiseyin SAHIN

Learning Outcomes of the Course

Students will be able to:

1.

2.

Discuss the main problems of computer (artificial) vision, its uses and applications

Design and implement various image transforms: point-wise transforms,
neighborhood operation-based spatial filters, and geometric transforms over images

. Define and construct segmentation, feature extraction, and visual motion estimation

algorithms to extract relevant information from images
Construct least squares solutions to problems in computer vision

Describe the idea behind dimensionality reduction and how it is used in data
processing

Apply object and shape recognition approaches to problems in computer vision
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Week 4: LOs: Spatial Image Filtering: Neighborhood Operations

At the end of Week 4: Students will be able to:
2. Design and implement various image transforms: neighborhood operation-based spatial filters

NOISE: any undesired information that contaminates an image
* Digital image acquisition process, which converts a light signal into a continuous
electrical signal that is then sampled, is the primary process by which noise
appears in digital images.

* Noise increases with the sensitivity setting in the camera, length of the exposure,
temperature, and even varies among different camera models due to different electronics.

SIGNAL

Camera Image

SIGNAL

Camera Image

http://www.cambridgeincolour.com/tutorials/image-noise.htm
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Select noise magnitude: LOW

Types of NOISE Bta e Deyistion
* Digital cameras: Most
typical: Random noise

Q: If an image patch has zero noise,
what is the shape of the noise

histogram?
1SO 100 1SO 200
Canon EOS 20D
I;'etach of the pladtcbhes Zatlit ze;ro nt(?|se, Pixel Area: 40 pm?
istogram would be a delta function Released in 2004

peak located at the mean. As noise
levels increase, so does the width of

this histogram.
Canon PowerShot A80

Pixel Area: 9.3 pm?
Released in 2003

Epson PhotoPC 800

Pixel Area: 15 pmZ
Released in 1999

http://www.cambridgeincolour.com/tutorials/image-noise.htm

1SO 400

5

Do we only have digital camera (optical) images ?

E.g. Ultrasound of a Liver: Ultrasound Images exhibit Speckle Noise

is used instead of sound waves.

E.g. Optical Coherence Tomography
image of retina

Optical coherence tomography-The

process is similar to that of ultrasonography, except that light

oherence

lideshare.net/tapan_j
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NOISE PROBABILITY DENSITY FUNCTIONS (PDFs) P
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FIGURE 5.2 Some important probability density functions.

Digital Image Processing: Gonzalez and Woods Book: Filtering Chapter

Mathematical Expressions for the PDFs
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FIGURE 5.3 Test
pattern used to
illustrate the
characteristics of
the noise PDFs
shown in Fig.5.2.

11

Gaussian

abc
de f

Rayleigh Gamma

FIGURE 5.4 Tmages and histograms resulting from adding Gaussian, Rayleigh, and gamma noise to the image

in Fig. 5.3.

Digital Image Processing: Gonzalez and Woods Book

: Filtering Chapter

12
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Gaussian Gamma
abc
GUCHE
FIGURE 5.4 Images and histograms resulting from adding Gaussian, Rayleigh, and gamma noise to the image
in Fig. 5.3.

Digital Image Processing: Gonzalez and Woods Book: Filtering Chapter

13

Exponential Uniform Salt & Pepper

ghi

ikl

FIGURE 5.4 (Continued) Images and histograms resulting from adding exponential, uniform, and salt and
pepper noise to the image in Fig. 5.3.

Digital Image Processing: Gonzalez and Woods Book: Filtering Chapter

14
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Exponential Uniform Salt & Pepper

ghi

ikl

FIGURE 5.4 (Continued) Images and histograms resulting from adding exponential, uniform, and salt and
pepper noise to the image in Fig.5.3.

Digital Image Processing: Gonzalez and Woods Book: Filtering Chapter

15

Impulse noise.

Original. Gaussian noise.
Impulse type noise in an image

e Random appearance of black and white pixel intensity levels throughout the image

* Can be caused by analog-to-digital converter errors, bit errors in transmission, ...

17



Impulse Noise

* Impulse noise may corrupt any signal including digital
images just due to occasional inversion of a single bit
representing the intensity value in some pixel

* The general model of impulse noise is
e(xy)= P1(x, )
’ l—pn,f(X,y)

where P, is the probability of distortion ( pnin percents
P, -100% is called the corruption rate)

n A certain intensity value to replace the image intensity f(x,y)

18

18

Impulse Noise

* Unlike additive noise, which just distorts intensity values,
impulse noise completely replaces the intensity values in
those pixels that are corrupted.

* The higher is corruption rate, the more pixels are affected by
noise and the more difficult is filtering

19

19
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g(x,y)=

Salt-and-Pepper Impulse Noise

* Salt-and-Pepper impulse noise replaces the
intensity values in the image f(x,y)
by Os and 255s with some certain probabilities

0
255

Po>»
Pass»

1-(p, +p255)>f(an/)

(Po * Doss ) -100%

* Since 0is black and 255 is white, a corrupted image is covered
by white and black impulses (“salt-and-pepper”)

* The corruption rate is

21

21

FILTERING

f(x.y)
Input
image

Pre-
processing

Important Note:
In this course, we will work with spatial, i.e. Space domain filtering only.

Spatial Filtering or Frequency Filtering ?

Frequency domain filtering operation

i Filter Inverse
Fourier T r
transform function Fourier
H(u,v) transform
F(u,v) H (11, v)F (1, )
Space-domain
—_ -

Filtering

FIGURE 4.5 Basic steps for filtering in the frequency domain.

Post-
processing

a(x.y)
Enhanced
image

22
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Q: Why do we use SPATIAL FILTERS?

¢ Smoothing Spatial Filters
» Averaging (linear) filters
¢ Order-statistic (nonlinear) filters
¢ Adaptive filters

¢ Sharpening Spatial Filters
eUnsharp Masking and Highboost filtering

¢ Morphological Image Filters: If time permits, but you should
take a look yourself. Used widely in image filtering

Noise Removal/Smoothing or Image Enhancement or Feature Extraction

* Typically these filters operate on small subimages, i.e. windows.

23
SMOOTHING SPATIAL FILTERS
Why smooth?
To reduce noise!
To increase signal to noise ratio!
24

11/1/21
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SMOOTHING SPATIAL FILTERS

Why smooth?

SNR =

To increase signal to noise ratio!

g

—oas

Histograms:

‘u.vignal

— Signal average value

0,0i5e _ Noise (or background)

standard deviation

, __..||I'||||||II||. ,,,,,,,,,,,,,,,,,,

&

1il_-|||]||!|‘II‘.I.I.._.I,.1

oy

o IIIIIIIII||||||IIIIIIII|II| _____

Original signal

Original w. random

noise

Recovered signal by
Gaussian smoothing

25

MECHANICS OF SPATIAL FILTERING

https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-
learning-1f6f42faeel

26
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MECHANICS OF SPATIAL FILTERING

ii..méu origin

b

bw(s,t)f(x—s,y—t)

Image pixels —

t=—

w(-1,-)| w(-1.0) | w(-1.1)

— f(x,y): image

w(s,t): filter mask
g(x,y): filter response: Convolution

w(0,-1) | w(0,0)

w(l,=) | w0 | wl)

Filter cocfficients

fe-ly-1| fe-1y) [fe-Ly+1)

Each pixel in w visits every pixel in f.

Sy +1)

f+Ly+1)

FIGURE 3.28 The mechanics of linear spatial filtering using a 3 X 3 filter mask. The form chosen to denote
the coordinates of the filter mask coefficients simplifies writing expressions for linear filtering.

27
Averaging (smoothing) filter masks
Q: Are the following filters fine in practice?
1 1 1 1 2 1
1 1 1 2 4 2
1 1 1 1 2 1
28
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Averaging (smoothing) filter masks

Don’t forget: You have to normalize the filter coefficients to sum to 1 for averaging filters

ab
FIGURE 3.32 Two
1 1 | | 2 1 3 X 3 smoothing
(averaging) filter
masks. The
constant multipli-
1 1 er in front of each
— X 1 1 1 — X 2 4 2 mask is equal to 1
9 16 divided by the
sum of the values
of its coefficients,
as is required to
1 1 1 1 2 1 compute an
average.
11
ZZW(s,t)f(x+s,y+t)
— — s==lt=-1
gloy)=2 Y wls.)f(x+s.y+1)  gloy)= T
s=—lt=-1
2.2 ws0)
s=—lt=—1
101 100.] 103
- * o 105 107 105 103 110
19 19 1/9
110 140 120
. . . 122 | 130 | 130 | 121 | 120
1/9 1/9 1/9
179 1/9 19
134 134 135
. ] L, 131 137 138 120 121
1/9 1/9 1/9
19 1/9 1/9
132 132 132 133 133 150 160 155
19 1/9 179 -
134 140 140 135 140 156 160 ""174
Figure 4.11 Local average mask.
130 138 139 150 169 175 170 165
126 133 138 148 163 169 180 185
130 140 150 169 178 185 190 200

Figure 4.12 Image smoothing using local average mask.

1/9 * (101 + .
1/9 * (100 + .

.+135) = 119.67
.+131)=121.11

30
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Convolution vs Correlation ?

Correlation
a b

w(x,y) ° f(x,y)=z Ew(s,t)f(x+s,y+t)

s=—a t==b

Convolution
a b
W) ® 7(er)= 3 Swlsi)rle-sa-i)
s=—a t=-b
Correlation yields a copy of the function, but rotated by 180°.

Q: When are the two equivalent?

A: When we have symmetric filters

31

Spatial Correlation And Convolution

Correlation Convolution
~ Origin f w ,— Origin f w rotated 180°
(@ 00010000 12328 00010000 82321 (i)
t
(b) 00010000 00010000 @)
12328 82321

L Starting position alignment

| — Zero padding ———

— —
(©0000000100000000 0000000100000000 (k)
12328 82321
(@0000000100000000 0000000100000000 ()
12328 82321
L position after one shift
(€©0000000100000000 0000000100000000 (m)
12328 82321
L position after four shifts
@ 0000OD0ODO0D0D1O000D0D0O0DO0O0O0 00000001 00000000 (n)
12328 82321
Final position —
Full correlation result Full convolution result
© 000823210000 000123280000 ©)
Cropped correlation result Cropped convolution result
(h) 08232100 01232800 )

FIGURE 3.29 Illustration of 1-D correlation and convolution of a filter with a discrete unit impulse. Note that
correlation and convolution are functions of displacement.

Digital Image Processing: Gonzalez and Woods Book: Filtering Chapter

32
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Example in 2D
FIGURE 3.30
Padded f Correlation
(middle row) and
convolution (last
row) of a2-D
. filter with a 2-D
[Ongm f(x,y) discrete, unit
1 impulse. The Os
, are shown in gray
"’(‘7' ” to simplify visual
1 123 analysis.
4 56
789
(a) (b)
 Initial position forw  Full correlation result Cropped correlation result
T3
! - I . . .
l+5 0 987 & Resultis flipped in both axes
789! 654 . .
98 7 321 (horizontal and vertical x
1 6 5 4
321 and y) compared to
convolution result
(c) (d) (e)
< Rotated w Full convolution result Cropped convolution result
g
16 5 4 123 .
321 456 < Convolution result
123 789
1 4 5 6
789
® (®) (0
Digital Image Processing: Gonzalez and Woods Book: Filtering Chapter

34

THQ: You are given 3 filter kernels below: for which one the correlation
result is equal to the convolution result?

—_ = =
NN
W W W

w

N

|

[\
S = O
—_— N =
S = O

(A) (B) (€

35
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THQ: Filter Kernel Size

FIGURE 3.33 (a) g
with square avera;

49
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THQ: Filter Kernel Size

Original image
EEFE R N | .
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Note that: Spatial filtering is not only for noise reduction! You
can use it as pre-processing for object/blob detection, etc.

abe

FIGURE 3.34 (a) Image of sizc 528 * 485 pixcls from the Hubble Space Telescope. (b) Image filtered with a
15 * 15 averaging mask. (c) Result of thresholding (b). {Original image courtesy of NASA.)

Digital Image Processing: Gonzalez and Woods Book: Filtering Chapter

38

Some advanced filtering examples from medical imaging:

Fig. 4 a X-ray image of the
coronary arteries. Iodine
contrast medium is injected in
the vessels, which causes them
to absorb more X-ray radiation
than the surrounding tissues.

b The vesselness transform of
the X-ray image enhances the
tubular structures, and
suppresses the other image
features

Figure from: D. Ruijters et al. Vesselness-based 2D-3D registration of the coronary arteries, Int J CARS, 2009.

T.Aksoy, Z. Spiclin, F. Pernus, G. Unal, Monoplane 3D-2D registration of cerebral angiograms based on multi-objective stratified optimization,
Physics in Medicine Biology. 2017.

Original Image

Vesselness
filtering

39

11/1/21
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Ex: Create Spatial Filters by using Gaussian Kernel Function

Figure: mathworks.com

40

Gaussian kernels

6:0.391 pixels (3x3)
141

412 4
141 3
©:0.625 pixels (5x5)
v 2321
2711 7 2
3113
2 71 2
1208 2 2
0:1.0 pixels (9x9)
001111100
012333210
1236761321
1.3.6 911 9 6 3 1
“ 13 7111211 7 31
136911 9631
1236761321
0123332214
001111100

0:1.6 pixels (11x11)

111 282 @ 11 1

12 2 443221

12 4 765 4 21

2 35 987 53 2

2 4 6 8101110 8 6 4 2

247 9111211 9 7 4 2

2 4 6 8101110 8 6 4 2

2 35 8 98753 2

12 4 676 5 4 21

122 4 4 43 221

111 3% 2411

02,56 pixels (15x15)

2 234556 6554322
2 3457788877543 2
34 6 7 91010111010 9 7 6 4 3
457 910121313131210 9 7 5 4
57 9111314151615141311, 9 7 §
5 7101214 16 17 18 17 16 14 1210 7 5
6 8101315171919 1917151310 8 6
6 81113161819201918161311 8 6
6 810131517 191919171513 10 8 6
5 710 12 14 16 17 18 17 16 14 1210 7 5
57 9111314151615141311 9 7 5
45 7°910121313131210 9 7 5 4
3 46 7 91010111010 9 7 6 4 3
2 34577 88775432
2.2 3455666554322

41
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Original. Gaussian noise.

Impulse noise.

42

Gaussian Smoothing

Noisy.

Smoothed a bit more.

Smoothed.

a

... and even more.

43
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original w. Impulse noise

100 15 20 20 30 B0 M0 4 50

noisy - Gauss filtered

100 150 200 260 300 350 400 480 600 100 150 200 250 300 350 400 450 500

44

Additive Noise model versus Multiplicative Noise model

* Additive noise corrupts the data by an addition process

added noise g(x,y) = f(X, y)+ ﬂ(X, y)

gnatmage (%)
original image ’ Noise corrupted image e.g. Thermal noise
f(ey) g(xy)
To remove additive random noise such as
Gaussian noise, linear filters such as averaging
filters can be used

* Multiplicative noise corrupts the data through a multiplicative process

original image n(x,y) Noise corrupted image g(x,y) = f(x, y) x n(xay)

1(5) iy )

e.g. Salt and Pepper noise is multiplicative. e.g. global illumination in an image is like a
Global illumination variations, Speckle noise in  noise mask multiplying pixels

sound/ultrasound, radar, ... To remove multiplicative noise, use others

such as nonlinear filters, e.g. order stats filters

45

11/1/21
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Averaging (mean) filters

Response based on averaging pixel intensities in a
neighborhood/window around the current pixel

A

g x,y) e F”tering p— f(x,y) Filtered image
Noise corrupted imag

Arithmetic mean f(x y)=i E g(s t)
* Noise reduced by blurring mn (s2)Es,,

* Works well for random noise,

Gaussian noise... Sxy : set of pixels (window)
around pixel (x,y)

Geometric mean
* Works well for Gaussian noise —

* Loses less image detail than
arithmetic mean filter f(x,y) = 1_[ g(s,t)

46

original w/ Gaussian noise

ab
cd

FIGURE 5.7

(a) X-ray image.
(b) Image
corrupted by
additive Gaussian
noise. () Result
of filtering with
an arithmetic
mean filter of size
3 % 3.(d) Result
of filtering with a
geometric mean
filter of the same
size.

(Original image
courtesy of Mr.
Joseph E.
Pascente, Lixi,
Inc.)

vo D »v .~ b»‘"
Arithmetic mean filtered

Digital Image Processing: Gonzalez and Woods Book: Filtering Chapter

47
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If you apply the wrong type of filter...

Figure 3.3-8 (Continued)

Sadeil

c. Image with pepper noise—probability = .04,

d. Result of geometric mean filter on image with
Pepper noise; mask size = 3,

48

Multiplicative Noise model

* Recall Multiplicative noise model:

original image n(x,y) Noise corrupted image g(x,y) = f(x’y) x n(x,y)
f(xay)ﬁ g(x,y)

* An idea: linearize the model by a nonlinear operation such as taking logarithm:
logg(x,y)=log f (x,y)+logn(x,)

Then use a linear filter to remove noise, and transform back by log™

* Typically what we do to remove speckle noise: a nonlinear filters such as order statistics
filters are used

see next slide

49
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q istic fil (x ) Nonlinear »
Order-statistic filters g\x,y ~Filtering [ f(x,y)
Response based on ordering (ranking) pixel intensity values in a
window (neighborhood) around the current pixel location
e.g. Median Filter
L ot = THO
69| 37: 18
51| 48] a4
0| 58|68
\
\ [
\ il
/
\
My [e3]a7]19] 51 [es] 450 58] 6]
Wip [ [or]wufe]e ool
min=T, madian=T; minxTy
50
istic fil (x ) Nonlinear A
Order-statistic filters &(%Y) —tiltering f(x,y)

Response based on ordering (ranking) pixel intensity values in a
window (neighborhood) around the current pixel location

Median Filter

x,y)=median g(s,¢
* Good for impulse noise f( y) (s.1)eS,, {g( )}
* Less smoothing than averaging filters

Max Filter & Min Filter
f(x,y)= max {g(s,1)}

» Max finds brightest points (reduces pepper (s.1)eS,,
noise —dark dots) A
* Min finds darkest points f(x,y) = min {g(s,t)}

,\',t)ESX),

(reduces salt noise — bright dots)

51
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Image smoothing with median filtering...

Figure 4.4-3 Image Smoothing with a Median Filter

A
a. Original image.

¢.5 x 5 median filter. d. 7 x 7 median filter.

52

Compare to arithmetic mean filter

Figure 4.4-2 Image Smoothing with an Arithmetic Mean Filter

:
‘ »
& ~ Y

¢. 5 x 5 arithmetic mean filter. d.7 x 7 arithmetic mean filter.

53
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Median filtering...

w. Salt and Pepper noise 15t Pass

ab
cd

FIGURE 5.10

(a) Image
corrupted by salt-
and-pepper noise
with probabilities
P, =P, = 0.1.
(b) Result of one
pass with a
median filter of
size 3 X 3.

(c) Result of
processing (b)
with this filter.
(d) Result of
processing (c)
with the same
filter.

: A R |
i %..ns |

- Gl
Weepe ‘,

2" Pass

Digital Image Processing: Gonzalez and Woods Book: Filtering Chapter

54

Impulse noise. Median filtered.

55

11/1/21
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Each template takes

More Order-statistic filters : the values its sorts from

the original image

. 101{ 69| 0
Response based on ordering
. . . oy 56 |255| 87
(ranking) pixel intensities P T
|O|<6|69 87 ’**|

Midpoint Filter
* Combines order-statistic and averaging
. . . . A 1 .

Good for .randorr.ﬂy distributed noise f(x,y)=[ max {g(s,t)}+ min {g(s,t)}}
(e.g. Gaussian, uniform) 2| (s.0)eSy s)ESy
Alpha-trimmed mean Filter
* Remove d/2 highest & lowest intensities
* Useful in removing multiple types of noise
(e.g. S&P + Gaussian) A 1
* d=0: arithmetic mean f(x,y)— mn—d %gr(s,t)

s,t)es,,
* d=mn-1: median
56
Arithmetic Median filtered
w. S&P noise mean filtered
| bl { | | .
i&!!,w ui“i'l! ~ m”“ 511
SRR 6}1 gttty g8 6 8 Ht Bttt g o PR
1 g ‘ ; i 3 " ‘ _
b SNmmEG: . MRS - UL
- ‘;_ > ; % = - 'E =
T =8 it 3 S SOMS =
QE = - il g%;-'ﬁ LTIV gfgr-j LA
Vol s e i ' vo @l s 1
abec
FIGURE 3.35 (a) X-ray image of circuit board corrupted by salt-and-pepper noise. (b) Noise reduction with
al 3 averaging mask. (c) \ ise reduction with a 3 % 3 median filter. (Original image courtesy of Mr
Joseph E. Pascente, Lixi, Inc.)
Digital Image Processing: Gonzalez and Woods Book: Filtering Chapter
57
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w. uniform noise + S&P noise

ALLL B L

v: FIGURE 5.12
' I i (a) Image
o corrupted
- LT e = by additive
= uniform noise.
= (b) Image
= additionally

corrupted by
additive salt-and-

% E Euumm = M
! e J [u? Es o ra
LR S i ‘ ) K‘;‘:St;‘:c:w

Arithmetic . Geometric mean filter;
g d tric
mean filtered ' * . mean filtered =~ (&) geometric
- & UL (e) median filter;
X A = 2 and (f) alpha-
- E = trimmed mean
4 ket i Ahlu“‘: filter withd = 5.
1] ! ! ! m £ it r! ! ! ! Wi s mcmm Alpha-trimmed
i ‘ mean filtered
Medi " l l
edian - Wy - QUL
filtered = =

* - UM * -:f Emmum

Digital Image Processing: Gonzalez and Woods Book: Filtering Chapter
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Mean-Median Filter

Similarly, for mixed noise (e.g. Gaussian type and impulse
type), you can design a blended mean-median filter:

I a Imean + (1 a) median

* a: the blending parameter
* I ean : the mean intensity in your filter window
* Imedian: the median intensity in your filter window

59
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Adaptive Filters

Adaptive to image characteristic in the neighborhood.

Modification of the gray-level values within an image based on
some criterion that adjusts its parameters as local image
characteristics change.

leage origin
—y
([ ] Filter fnas
N1
£
Image pixels —/
/

60

Adaptive local noise reduction filter

Makes use of mean (average intensity) and variance (measure of contrast)
in an image window (filter size) and global intensity characteristics

O-rz [g(x, y)— mL] m, :local mean of pixels in SW

L o} :local variance of pixelsin S,

£ )= g(xy)-

o} :variance of overallnoise (unknown)

Works best with Gaussian and uniform noise

Issues like how to estimate O'f

61

28



ab

cd
FIGURE 5.13
(a) Image
corrupte

noise of zero
mean and
variance 1000.

(b) Result of
arithmetic mean

geometric mean
filtering

(d) Result of
adaptive noise

Arithmetic
w. Gaussian noise mean filtered

IO T

(R BT

| L

e Ui TN
3 = e ;
e e = -ets 3
L = -2 D :‘ = -2
vuyeis 1 - 3
!!!!m. !ll!k“ﬂ%ﬁ%
] ] . 1]

- ST g‘ - UL
@ 3 e e =
o it = 8 3 =

=% oBMRAAARAAN - coliLLARAE
- . et s
el W ae il Ny
Geometric Adaptive noise
mean filtered reduction filtered

Digital Image Processing: Gonzalez and Woods Book: Filtering Chapter
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(r,c) =k,

IA CE

Adaptive Contrast Enhancement (ACE) Filter

[{(r,c)-m, (r,c)]+k,m, (r,c)

.o o
t\ms term relates to Coeff of Variation = —
m

where m,, , = mean of the entire image I(r,c)
Oyoc = local standard deviation (in the window under consideration
Mo = local mean (average in the window under consideration)
k, ,k; = constants, vary between 0 and 1

Here, the goal is to enhance rather than denoise!
Areas of low contrast (=low standard variation) are boosted (i.e., sigma_loc is low)

The mean is then added back, to restore local average brightness.

*In practice, it is often helpful to shrink the histogram of the image before applying this filter

63
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Image Filtering and Enhancement: Clipping

Note: Always check the range of the resulting, i.e. the filtered or the
enhanced, image intensity:

O lf‘ [ﬁltered (x’ y) < O
[ﬁltered (x’y) = 255 lf [ﬁltered (X, y) > 255
Iﬁ””ed () otherwise

64

Color Image Filtering

Typically apply the filter either to:

1. each R,G,B channel separately; or

2. only the Intensity (brightness) component in another color space, e.g: H,S,| color space
(we did not cover different color spaces in this course, but you can use them as transforms)

The original image After a kind of Adaptive Contrast Enhancement
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Adaptive Contrast Enhancement Filter example

Left: Dark lava flows and bright salt flats reveal little local detail.
Right: Same scene with a kind of RGB adaptive contrast enhancement filter applied
The final image is a weighted average of the LACE filter output (90%) and the original image (10%).

Enhanced contrast in dark and light areas brings out significant surface detail throughout the image.

om fon/T i lace10n.pdf

66

Unsharp Masking and High-Boost Filtering

The unsharp filter is a simple sharpening operator which derives its
name from the fact that it enhances edges (and other high frequency
components in an image) via a procedure which subtracts an unsharp,
or smoothed, version of an image from the original image.

The unsharp filtering technique is commonly used in the
photographic and printing industries for crispening edges.
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a0 om

Characteristics of an unsharp filter
FIGURE 3.39 1-D

illustration of the
mechanics of
o . unsharp masking.
Original signal (a) Original
signal. (b) Blurred

signal with
original shown

P dashed for refere-
nce. (¢) Unsharp
. mask. (d) Sharp-
Blurred signal ened signal,
- obtained by

adding (c) to (a).

Unsharp mask= Original
signal — Blurred signal;

N\ can be used for sharpening if
N we add it back into the
original signal.

Unsharp mask

Sharpened signal

68
Consider the simple image object whose strong edges have been slightly blurred
by camera focus.
[
In order to extract a sharpened view of the
edges, we smooth this image using a mean
filter (kernel size 3 X 3) and then subtract the
L ‘ smoothed result from the original image
Produce an edge image g(x,y) from an input image
f(x,y) via
g(x5,2) = 1 (%) = £ (5:3)
where fo0th(X,Y) is @ smoothed version of f(x,y)
Because we subtract all low frequency components from the original image (i.e., we
highpass filtered the image) we are left with only high frequency edge descriptions.
69
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Desired thing: a sharpening operator give us back our original image
with the high frequency components enhanced.

In order to achieve this effect,

we now add some proportion of this high frequency image back
onto our original image.

sl .
A\

70
¥+
f(x,¥) Smooth -® a(x,¥) @ =
+1 + fshar]f"}')
The complete unsharp filtering operator.
g(xay) = f(xay) - f;mooth(xay)
g (552) = (3,2) 4 K * g (x, )
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e
FIGURE 3.40

(a) Original

image.

(b) Result of
s blurring with a

Gaussian filter.
(c) Unsharp
mask. (d) Result
of using unsharp

masking.

— (e) Result of
using highboost
filtering.

DIP-X

Digital Image Processing: Gonzalez and Woods Book: Filtering Chapter
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ab

cd

FIGURE 3.43

(a) Image of
whole body bone
scan.

(b) Laplacian of
(a). (c) Sharpened
image obtained by
adding (a) and (b).

Some kind of edge detector (we will study
this in the coming weeks)

Digital Image Processing: Gonzalez and Woods Book: Filtering Chapter
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A slight further generalization of unsharp masking is called high-

boost filtering

g(x,y) = AT(XY) = famootn(X,y)

where A>1.

0 -1 0 -1 -1 -1
-1 A+4 -1 -1 A+8 -1
0 -1 0 -1 -1 -1

ab

FIGURE 3.42 The
high-boost filtering
technique can be
implemented with
either one of these
masks, with A = 1.
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ab

cd

FIGURE 3.43

(a) Same as

Fig. 3.41(c). but
darker.

(a) Laplacian of
(a) computed with
the mask in

Fig. 3.42(b) using
A=0.

(c) Laplacian
enhanced image
using the mask in
Fig. 3.42(b) with
.(d) Same
as (¢). but using,
A=17.

A=1.7

P —

Some kind of
edge detector
(we will study
this in the
coming weeks)

Digital Image Processing: Gonzalez and Woods Book: Filtering Chapter
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Enhancement Using Subtraction

v

Subtraction of pre- and post-contrast

Post-contrast

MR Mammography (D. Rueckert)

76

Ex: Nonlinear Filtering: Morphological Image Filtering

Goal: Extract image components that are useful in representation of:
objects/shapes in images; regions; boundaries; skeletons; convex hulls;
.. Useful for Connectivity analysis, Blob Analysis etc.

Two Main Image Morphology Operations: Dilate and Erode

abc

FIGURE 9.7 (a) Image of squares of size 1.3, 5,7.9, and 15 pixels on the side. (b) Erosion of (a) with a square
structuring element of 17s, 13 pixels on the side. (¢) Dilation of (b) with the same structuring element.
Digital Image Processing: Gonzalez and Woods Bool
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Morphological Image Processing

* Binary Morphology: assumes objects are represented in
images using only two “color” values, say black and white.

* The coordinates of the black (or white) pixels form a complete
description of the objects in the image.

* Objects form the Sets in images

* Another branch of morphology: Grayscale morphological
operations

78

Morphology-based Operations

We defined an image as an (amplitude) function of two, real
(coordinate) variables I(x,y) or two, discrete variables /[[m,n].

An alternative definition of an image can be based on the notion
that an image consists of a set (or collection) of either

continuous or discrete coordinates.

In a sense, the set corresponds to the points or pixels that
belong to the objects in the image.

A binary image containing two object sets A and |B.
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Morphological Filtering

Morphological Image Filtering: Based on Set Operations

AUB

80

DILATION
Consider the example where A is a rectangle and B is a disc centered
on the origin.

A is dilated by the structuring element B:

e —

&

X
The result is a new set (whose outer border is marked by dashed points) made
up of all points generated by first:

+ Shifting B set over A
+ Assigning the intersection of shifted B and A to each center pixel point

81
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DILATION

Mathematically

A

BX . Reflection of B about its origin

Since Bis symmetric:

=B

Dilation of A by Structuring element B

A@B={x:(f3xﬂA)¢®}

X

82

EROSION

Erosion of the object A by a structuring element B is given by

Interpretation of Erosion: Set of all points x such that B
translated by x is completely contained in A
=>no common elements with background A¢

A6 B=1{z:B.C A

A is eroded by the structuring element B to give the internal
dashed shape.
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Dilation and erosion are duals of each other with respect to set
complementation and reflection. That is,

(A5 B) =A@ B.

Dilation, in general, causes objects to dilate or grow in
size;

Erosion causes objects to shrink.

The amount and the way that they grow or shrink depend
upon the choice of the structuring element.

Note: Duality is proved in Section 9.2.3, Gonzalez and Woods book

84

.................

The standard structuring elements (a) N, (b) N;

Typically the structuring element B is a circular disc in the plane,
but it can be any shape.

The image and structuring element sets need not be restricted to
sets in the 2D plane, but could be defined in 1, 2, 3 (or higher)
dimensions.
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FIGURE 9.2 First
row: Examples of
structuring
elements. Second
row: Structuring
elements
converted to
rectangular
arrays. The dots
denote the centers
of the SEs.
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Erosion Operation Example

3 bk
L

ab
cd

FIGURE 9.5 Using
erosion to remove
image compo-
nents. (a) A

486 X 486 binary
image of a wire-
bond mask.
(b)—(d) Image
eroded using
square structuring
elements of sizes
11 X 11,15 X 15,
and 45 X 45,
respectively. The
elements of the
SEs were all 1s.
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Dilation Operation Example

Historically, certain computer
programs were written using
only two digits rather than
four to define the applicable
year. Accordingly, the

company's software may
recognize a date using "00"

Historically, certain computer
programs were written using
only two digits rather than
four to define the applicable
year. Accordingly, the

company's software may

recognize a date using "00"

FIGURE 9.7

(a) Sample text of
poor resolution
with broken
characters (see
magnified view).
(b) Structuring
element.

(c) Dilation of (a)

as 1900 rather than the yr'

as 1900 rather than the year by (b). Broken
2060. /

2000. segments were
joined.
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Applications of morphological operations

Erosion and dilation can be used in a variety of ways, in parallel and
series, to give other transformations including thickening, thinning,
skeletonisation and many others.

Now intuitively, dilation expands an image object and erosion
shrinks it. We can combine the two operations to obtain new
different operations.
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Opening: Erosion followed by dilation

A°B=U[(B)(B), C A}

Translates of B in A
@

abcd

FIGURE 9.8 (a) Structuring element B “rolling” along the inner boundary of A (the dot
indicates the origin of B). (b) Structuring element. (c) The heavy line is the outer
boundary of the opening. (d) Complete opening (shaded). We did not shade A in (a)
for clarity.

90

Closing: Dilation followed by erosion

abec

FIGURE 9.9 (a) Structuring element B “rolling” on the outer boundary of set A. (b) The
heavy line is the outer boundary of the closing. (¢) Complete closing (shaded). We did
not shade A in (a) for clarity.
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Opening generally smooths a contour in an image,
breaking narrow isthmuses (a narrow passage connecting two larger
structures) and eliminating thin protrusions.

Closing tends to narrow smooth sections of contours, fusing narrow breaks
and long thin gulfs, eliminating small holes, and filling gaps in contours.

The opening (given by the dark dashed lines) of A (given by the solid lines. The structuring
element B is a disc.
The internal dashed structure is A eroded by B.

92

Closing is the dual operation of opening

AeB=(A® B)e B.

The closing of A by the structuring
element B.

R U

This is like “smoothing from the outside'. Holes are filled in and
narrow valleys are “closed'.
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Opening is like ‘rounding from the inside": the opening of A by Bis
obtained by taking the union of all translates of B that fit inside A.
Parts of A that are smaller than B are removed. Thus

AoB=(AcB)® B,

B

4

The opening of A by the structuring element B.

94

Morphological Filtering:

The morphological filter {A o B} ® B can be used to eliminate “salt and pepper’
noise.

b
dc
efif

FIGURE 9.11

(a) Noisy image.
(b) Structuring
element.

(c) Eroded image.

)(A@B)@B=A "B (d) Opening of A.

(a-B@B [(A°B)®B|©B=(A°B)*B (e) Dilation of the
opening.
(f) Closing of the
opening.
(Original image
courtesy of the
National Institute
of Standards and
Technology.)

%ﬁ\\\\{&
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The important things to note are that

* morphological operations preserve the main geometric
structures of the object.

* Only features ‘smaller than' the structuring element are affected
by transformations.

* All other features at "larger scales' are not degraded.

Note: These are not valid with linear transformations, such as given
by convolution.

96

Boundary Extraction by Morphology

The boundary of a set 4, denoted by @A, can be obtained by first
eroding A with B, where B is a suitable structuring element, and then
performing the set difference between 4 and its erosion. That is:

dA= A— (A B).

Typically, B would be a 3 x 3matrix of 1s.

ab Origin
i

FIGURE 9.13 (a) Set
A.(b) Structuring B
element B. (c) A 4
eroded by B.

(d) Boundary. given

by the set
difference between
A and its erosion.

AGB B(A)
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ab
FIGURE 9.14

pl

elem
Fig. 9.13(b).
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abc

FIGURE 9.16 (a) Binary image (the white dot inside one of the regions is the starting
point for the hole-filling algorithm). (b) Result of filling that region. (c) Result of filling
all holes.

Region filling can be accomplished by Closing operation

or iteratively using dilations, complementation, and intersections (not all
are covered in class, you can look at Gonzalez Woods Chapter 9 for various
kinds of morphological operations)

100

Gray-value Morphology

Just: Replace binary sets with gray-valued images
Replace AND operation with MIN operation
OR operation with MAX operation

ab
c

FIGURE 9.29
() Original
image. (b) Result
of dilation.

() Result of
erosion.
(Courtesy of

Mr. A. Morris,
Leica Cambridge,
L)

a) Dilation b) Erosion ¢) Smoothing
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Texture Segmentation

ab

FIGURE 9.35

(a) Original
image. (b) Image
showing boundary
between regions
of different
texture. (Courtesy
of Mr. A. Morris,
Leica Cambridge,
Ltd.)

Close the image by successively using larger structuring elements.

102

L A - u
ab
cd o . ..
FIGURE 9.43 .
Textural
segmentation.
(a) A 600 X 600 .
image consisting
of two types of o . . .
blobs. (b) Image [ )
with small blobs 4
removed by -
closing (a). -
(c) Image with ..
light patches
between large .
blobs removed by .
opening (b).
(d) Original .
image with
boundary .‘
between the two
regions in (c) . .
superimposed. .
The boundary was a
obtained using a
o e (c) Open image b with SE > separation dist btw
operation. blObS
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Next Generation Filters: Learnable

Idea: Let the algorithm learn the filters through Artificial Neural
Networks, lately known as Deep Learning

Not covered in our class, where you are learning hand-crafted
filters, and feature engineering, which is important to know before
you work with Learning in (Visual) Data Processing/Science

104

END OF LECTURE
Recall Learning Objective (LO) for Week 4: Students will be able to:
LO2. Design and implement various image transforms:

neighborhood operation-based spatial filters

In the next Assignment:
You will work on Spatial Filters

Reading Assignments:

Study this week’s topics from your lecture notes

NEXT TIME: We will study Edge Detection
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