
13.12.2020

1

BLG453E COMPUTER VISION
Fall 2020 Term

Week 8

Instructor: Prof. Gözde ÜNAL

Teaching Assistant: Yusuf Hüseyin ŞAHİN

İstanbul Technical University
Computer Engineering Department

Thanks: Some Slides in this presentation are from the lecture notes of Prof. Greg Slabaugh at City University of London

1

Students will be able to:

1. Discuss the main problems of computer (artificial) vision, its uses and applications

2. Design and implement various image transforms: point-wise transforms,
neighborhood operation-based spatial filters, and geometric transforms over images

3. Define and construct segmentation, feature extraction, and visual motion estimation
algorithms to extract relevant information from images

4. Construct least squares solutions to problems in computer vision

5. Describe the idea behind dimensionality reduction and how it is used in data
processing

6. Apply object and shape recognition approaches to problems in computer vision

Learning Outcomes of the Course

2

13.12.2020

2

At the end of Week : Students will be able to (Learning Objectives of the week):

Week 8-9: Image Segmentation

3. Define and construct segmentation, feature extraction, and visual
motion estimation algorithms to extract relevant information from
images

3

Green Screen

Prank:
https://www.youtube.com/watch?v=wFa6NIgSR
KQ

https://en.wikipedia.org/wiki/Chroma_key

4

https://www.youtube.com/watch?v=wFa6NIgSRKQ

13.12.2020

3

Segmentation
• Segmentation has a variety of practical uses

cut out

recolouring
(courtesy of Tommaso)

compositing

5

Segmentation
• Autonomous vehicles: Segmentation is a crucial early

stage processing for later decision stages

S.C. Yurtkulu, Y. Şahin, G. Unal. Semantic Segmentation with Extended DeepLabv3 Architecture, SİU 2019.

6

13.12.2020

4

Segmenting anatomical structures

Some results from
Dr. Andac Hamamcı and Dr. Suheyla Cetin’s PhD
thesis results at Prof. G. Unal’s group

measurement

7

Prof. J. Groh, Duke University

Some neurons receive net excitatory in the center and net inhibitory from the surround, and
others receive net inhibitory in the center and net excitatory synapses in the surround.

As a result: retinal ganglion cell are more sensitive to patterns of light that are not uniform, but
are changing in a way that, that matches their center surround organization
That can make them most responsive to light spots on a dark background, which is referred to as
having an on center and off surround, or dark spots on a light background, which is referred to
as having an off center and on surround.
This is a step towards identifying boundaries of objects (happens later in visual cortex)

Center Surround Organization in the Eye Neurons

http://www.youtube.com/watch?v=KE952yueVLAVideo min: 1:04:

8

13.12.2020

5

Biological basis:

Gestalt psychology identifies several properties that result in grouping/segmentation

9

Consequence:
Groupings by Invisible Completions

* Images from Steve Lehar’s Gestalt papers: http://cns-alumni.bu.edu/pub/slehar/Lehar.html

Stressing the invisible groupings:

11

13.12.2020

6

Brain Visual Maps
The brain’s visual system (primary visual cortex) is sensitive to orientation

http://www.youtube.com/watch?v=8VdFf3egwfg

video (6:13 – 6:33) orientation and
receptive field sizes

Series of visual stimuli
presented to a cat:
and responses are
recorded from a neuron
in visual cortex

Hubel and Wiesel: The Nobel Prize in Physiology or Medicine 1981 for their discoveries
concerning information processing in the visual system”

Listen to the sounds (each corresponds to a spike) recorded from a neuron
in the visual cortex

12

And the famous invisible dog eating
under a tree:

Slide: Bradski&Trun

13

13.12.2020

7

Essentially, segmentation is a grouping problem.

Segmentation

Depending on the image, this can be difficult!
Humans are adept at visual grouping.

14

• Segmentation partitions an image into regions of interest.

• The first stage in many automatic image analysis systems.

• A complete segmentation of an image domain is a finite set of
regions R1, ..., RN, such that

From Images to Objects/Regions: Segmentation

Ω =∪Ri

15

13.12.2020

8

• Many approaches proposed
– cues: color, contours, textural patterns
– automatic vs. user-guided
– no clear winner

• Is user-input required?
• * Our visual system is proof that automatic methods are possible, classical

image segmentation methods are automatic
• * Argument for user-directed methods? only user knows desired

scale/object of interest
Segmentation algorithms must be chosen and evaluated
with an application in mind

Image Segmentation
How could we
segment a scene into
objects and others?

16

Segmentation: Labeling pixels in an image so that
the image is partitioned into “meaningful”
regions

Image from Kohli, MICCAI 2009 tutorial

Problem of Image Segmentation:

Input: a grayscale or color image or image volume

Output: a binary (K-ary) image with labels

e.g. Labels = “foreground” vs “background”
or Labels = 0 or 1

Labels: 0, 1, 2, ... K (K objects) if more than
two regions exist:

17

13.12.2020

9

Segmentation
Image segmentation partitions an image into regions (aka segments).

Input Output

You can think of image segmentation as assigning a label to each pixel in the image.
In the case above, there are two labels: bird (foreground, white) and non-bird
(background, black).

Segmentation
Algorithm

18

Segmentation
• There can be any number of labels

• Different types of data; more than two dimensions

Four labels:
1. Non-brain
2. Grey matter
3. White matter
4. CSF

Segmentation
Algorithm

Green: Contours of the binary segmentation map

19

13.12.2020

10

Segmentation
• The boundary of a segment provides a shape.

C5

C6

C5 C5 C5

C6
C6

C6

A collection of aligned C4 vertebra shapes. From this,
we can do all sorts of interesting things:
• Population statistics
• Mean, variation (principal component analysis)
• (more)

20

Under and over segmentation
• An image that has been broken into too many segments is considered to be over-

segmented

• Not enough segments is considered under-segmented

Pink flowers merged together

21

13.12.2020

11

Bird counting
• How would you determine the number of birds in this image?

http://350sav.fotomaps.ru/flock-of-birds.php

I = cv2.imread("birds.png",0)

• One way is to count the dark blobs. First we need to find the dark blobs.
• Let’s load the image and convert to grayscale

Or use a conversion from rgb2gray

22

Thresholding
• The simplest form of segmentation is to threshold an image. This assigns a value

of 1 to any pixel that satisfies the threshold, otherwise, 0. A binary image is
produced.

I = np.uint8((I < 30)
* 255)

cv2.imshow('Thresholded'
' at 30', I)

cv2.waitKey(0)

>T if looking for bright regions

I = np.uint8((I < 70)
* 255)

cv2.imshow('Thresholded'
' at 70', I)

cv2.waitKey(0)

I = np.uint8((I < 120)
* 255)

cv2.imshow('Thresholded'
' at 120', I)

cv2.waitKey(0)

23

13.12.2020

12

Bird counting

I = cv2.imread("birds.png",0)
ret,B=cv2.threshold(I, 70, 255, cv2.THRESH_BINARY_INV)
cv2.imshow("Thresholded at 70",B)
J = cv2.morphologyEx(B, cv2.MORPH_OPEN, np.ones((3,3),np.uint8))
cv2.imshow('Opened',J)
labelCount, labels = cv2.connectedComponents(J)
Map component labels to hue val
label_hue = np.uint8(179*labels/np.max(labels))
blank_ch = 255*np.ones_like(label_hue)
labeled_img = cv2.merge([label_hue, blank_ch, blank_ch])

24

Bird counting

cvt to BGR for display
L = cv2.cvtColor(labeled_img, cv2.COLOR_HSV2BGR)
set bachground label to black
L[label_hue==0] = 0
cv2.imshow('Labeled. Number of birds = ' + str(labelCount-1), L)
#backgorund is also labeled
cv2.waitKey(0)
cv2.destroyAllWindows()

25

13.12.2020

13

So, the simplest Segmentation approach is global thresholding

Simplest way to segment an image : create a binary image by
separating the image domain into two regions

Picture: Bryan Morse notes, BYU

It labels each pixel in or out of the region of interest by comparison of the grey level with
a threshold T:

26

Finding a good threshold ?

• The success of thresholding often depends on finding a good threshold T.
• Recall the histogram h(I) of an image. It counts how many pixels of a particular

intensity are in the image.

I = cv2.imread(lung.png",0)
cv2.calcHist([img],[0],None,

[256],[0,256])
J = I > 150;
cv2.imshow('Thresholded at 150‘, J);a good T?

lungs tissueair

27

13.12.2020

14

Recall Histogram:

Recall that a normalized histogram is a probability distribution:

That is, the number of pixels n(I) having grayscale intensity I as
a fraction of the total number of pixels n.

n
n(I) p(I) =

28

Slide: M. Niethammer

Look at Histogram of the image (CT image slice from the brain)

29

13.12.2020

15

M. Niethammer

30

* Segmentation of skin a notoriously difficult problem, given the
variation observed in practice. One can perform simple skin detectors
using colour thresholding.

Skin segmentation

[Chai et al.]

[Al-Tairi et al.]

Convert to YUV
Skin = (77 <= U <= 127) and

(133 <= V <= 173)

I = cv2.imread("faces.png");
cv2.imshow('Faces',I)
YUV= cv2.cvtColor(I, cv2.COLOR_RGB2YCR_CB);
U=YUV[:,:,1]; V=YUV[:,:,2]; R=I[:,:,2]
G=I[:,:,1]; B=I[:,:,0]
rows,cols,planes=I.shape

Chai et al.
skin=np.zeros([rows,cols],dtype=np.uint8)
ind=(77<=U) & (U<=127) & (133<=V) & (V<= 173)
skin[ind]=255; cv2.imshow('Chai',skin)

Al-Tairi et al.
skin=np.zeros([rows,cols],dtype=np.uint8)
ind=(80 < U) & (U < 130) & \

(136 < V) & (V <= 200)& \
(V > U) & (R > 80) & \
(G > 30) & (B > 15)& \
(abs(R-G) > 15)

skin[ind]=255; cv2.imshow('AL-Tairi',skin);
cv2.waitKey(0);cv2.destroyAllWindows()

Convert to YUV
Skin = (80 < U < 130) and

(136 < V < 200) and
(V > U) & (R > 80) and
(G > 30) & (B > 15) and
|R-G| > 15

Examples below: Work in a color space (other than (R,G,B)): Y, U, and V values; Y stores the
brightness (luminance), and the color (chrominance) stored as U and V values.

31

http://www.ee.cuhk.edu.hk/~knngan/TCSVT_v9_n4_p551-564.pdf
http://52.68.174.105:8080/jips/dlibrary/JIPS_v10_no2_paper9.pdf

13.12.2020

16

Some results from the papers

Q. Can you implement a histogram-based threshold selection for skin segmentation?

32

Rule-based
• We have a set of rules that label a pixel as skin or non-skin.
• More abstractly, we can think of this as

Set of rules
Skin (label = 1)

Non-skin (label = 0)
colour

ð This is a rule-based classifier

In this case, the rules have been generated by a human by looking at many datasets.

* An alternative is to use machine learning to develop a supervised approach to
skin detection. Supervised learning is another way to perform segmentation, topic
of another time.

33

13.12.2020

17

Automatic thresholding methods
• Many automatic methods to determine the threshold assume a bimodal histogram,

meaning there are two peaks (one for foreground, the other for background)

background
foreground
histogram

“optimal” threshold

Always ask: “Optimal” in what sense?
34

Bimodal histogram Trimodal histogram:

For instance, the segmentation thresholds T are set as the local
minima of the histogram

Methods of threshold detection: Usually based on histogram analysis

35

13.12.2020

18

Bryan Morse, BYU

Problems :
Noisy Histograms
Are there better ways?

Finding Modes of Histograms

Idea: find two peaks (modes) and the local minimum in between

37

38

13.12.2020

19

Figure: Bryan Morse, BYU

Problem 1: Don’t know the distributions

Problem 2: “Optimal threshold” as the intersection of two
distributions is not the same as the local minimum.

39

One can express the total variance
of image intensities as:

Within-class
variance

Between-class
variance

Since the total variance is constant and independent of T, the effect of changing
the threshold is merely to move the contributions of the two terms back and
forth.

So, minimizing the within-class variance is the same as maximizing
the between-class variance with respect to “optimal” threshold T to
be estimated.

σ 2 (T) =σWithin
2 (T)+σ Between

2 (T)

“Optimal” Thresholding
One approach was proposed by Otsu

T: unknown
threshold

40

13.12.2020

20

Within-class
variance

Between-class
variance

σ 2 (T) =σWithin
2 (T)+σ Between

2 (T)

“Optimal” Thresholding by Otsu Method

T: unknown
threshold

Minimize wrt T or equivalently Maximize wrt T

Total variance is constant

The nice thing about this is that we can calculate the quantities in recursively as
we run through the range of T values when we compute the variance

σ Between
2 (T)

T: current
threshold

41

Optimal thresholding (Otsu)

• An approach was proposed by Otsu.
• Otsu’s method finds the threshold T that minimises the within-class variance, defined as

where and are the variances of the foreground and background, and

are weights formed by summing the histogram pdf over the background and
foreground intensities, respectively.

In OpenCV, Otsu thresholding is implemented with the function threshold
with cv2.THRESH_OTSU parameter, which returns a threshold in the range of
0 to 1.

42

13.12.2020

21

Optimal thresholding (Otsu)
Easier way to calculate:
• If you subtract the “within-class” variance from the total variance of the combined

distribution, you get the “between-class” variance:

σ 2
Between (T) =σ

2
total −σ

2
within (T)

= wB (T)[µB (T)−µ]
2 +wF (T)[µF (T)−µ]

2

where is the combined variance and is the combined mean.σ 2 µ

* Since total variance is independent of the threshold, maximizing the between-class
variance is the same as minimizing the within-class variance.

µ = wB (T)µB (T)+wF (T)µF (T)
Substituting:

and simplifying, we get:

σ 2
Between (T) = wB (T)wF (T)[µB (T)−µF (T)]

2

43

“Optimal” Thresholding (Otsu’s method)

Goal: Find T that maximizes the measure:

σ 2
Between (T) = wB (T)wF (T)[µB (T)−µF (T)]

2

ALGORITHM:

i. For each potential threshold T:

1. Separate the pixels into two clusters according to the threshold T
2. Find the mean of each cluster (don’t have to calculate the variance in

this way – if you minimize within-class variance instead, you have to calculate the
variances of each cluster)

3. Calculate the above measure

ii. Output: Choose the threshold T that gives the maximum measure.

44

13.12.2020

22

Extra Slide 1: OTSU’S THRESHOLDING Method: Details for an even more efficient implementation
Note the notation change from w_ weights to n_ and subscripts B(background) and O(object)

45

Extra Slide 2: A very efficient implementation

46

13.12.2020

23

Digital Image Processing, Gonzalez and Woods

Result of Otsu

47

Digital Image Processing, Gonzalez and Woods

Effect of Noise in Thresholding

48

13.12.2020

24

Digital Image Processing, Gonzalez and Woods

Effect of Noise and Smoothing in Thresholding

49

Ternary Segmentation: i.e. Segment the image into 3 regions

Digital Image Processing, Gonzalez and Woods

50

13.12.2020

25

Iterative Thresholding method (Another method)
1. Set T to some initial value, and determine foreground and background pixels.
2. Compute mb, the mean of the background, and mf, the mean of the foreground, based

on the current value of T.
3. Set T = (mb + mf)/2
4. Go to step 2 until convergence (when T no longer changes).

T=50
lastT=0
while abs(T-lastT) > 1 :

lastT=T
mf= np.mean(I[I>T])
mb= np.mean(I[I<=T])
T=0.5*(mb+mf)

cv2.imshow("Lungs",I)

In this example, the loop executes 5 times, with T starting at 50, and
going to 81.9, 126.7, 138.2, 139.3, 139.4

An idea to set the initial Threshold: Start with m_b as the average of the four corner pixel, which
is assumed to be the background, and m_f as the average of everything else. Go to step 3 of the
algorithm above and continue.

52

Idea behind Iterative Threshold Selection

Note: This is exactly the K-means algorithm!

53

13.12.2020

26

54

55

13.12.2020

27

Picture: Bryan Morse, BYU

Gaussian Mixture Modeling Idea: based on approximation of the histogram
of an image using a weighted sum of two or
more probability densities with normal
distribution.

57

 x =!

)(x!

Gaussian Mixture Modeling

58

13.12.2020

28

59

K means Clustering

• The optimal (iterative) thresholding method described on the previous slides is an
example of the K means algorithm, where K = 2.

• K means is a clustering technique, in this case grouping pixels of similar intensity into
two groups, or clusters.

• However, K means can be used to cluster data into any number (K) classes. The data can
be based on intensity, colour, or any attribute associated with a pixel (e.g., texture,
depth, etc.)

• It requires K to be provided in advance.

60

13.12.2020

29

Segmentation as a Clustering Problem
• How to choose the representative colors?

– This is a clustering problem!

Objective
• Each point should be as close as possible to a cluster center

– Minimize sum squared distance of each point to closest center

R

G

R

G

R. Szeliski Slides

62

Break it down into subproblems
• Suppose I tell you the cluster centers ci

– Q: how to determine which points to associate with each ci?

• A: for each point p, choose closest ci

Suppose I tell you the points in each cluster
• Q: how to determine the cluster centers?
• A: choose ci to be the mean of all points in the cluster

R. Szeliski Slides

63

13.12.2020

30

Algorithm: K-means clustering
1. Start with a set of N points (green points below)
2. Randomly initialize the K cluster centers, c1, ..., cK (x’s below)
3. Assignment: Given cluster centers, determine points in each cluster

• For each point p, find the closest ci. Put p into cluster i
4. Update: Given points in each cluster, calculate new means ci

• Set ci to be the mean of assigned points in cluster i
5. Go to 3 until convergence (e.g. means ci no longer change)

Java demo (please check if the link still works)
http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html

64

K-means clustering

Properties
– Will always converge to some solution
– Can be a “local minimum”

• does not always find the global minimum of objective function

K-means minimizes the objective function: Sum of Within-Cluster Variance, which is
also Mean Squared Error within each cluster.
Equivalently: it is based on Sum of Squared Distances (SSD) between points in a cluster
and the mean point

65

http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html

13.12.2020

31

Issues with K means
• What is K?

– In some applications, there is an obvious K. In others, it may be unclear.
• How to initialise the means? Potentially different results each time the algorithm is run

– One can rerun the algorithm multiple times and merge the results
• Dealing with high dimensional data

– Finding nearest neighbours can be slow (e.g. kd tree can help)
• How do you measure distance?

– Normally the L2 norm (Euclidean distance) is selected, but there are other options,
for example, the L1 distance (aka CityBlock distance).

p = [1, 1]T

q = [5, 4]T

dL2 = sqrt(32+42)=5
dL1 = 3+4=7

5-1=4

4-
1=

3

66

K means
• OpenCV has support for K means using with the kmeans function. It requires an NxM

matrix. Here, N is the number of pixels, and M are the features (colours) used in the
grouping. This can be achieved using the reshape function.

img = cv2.imread('road_sky.jpg'); cv2.imshow('Original' ,img)
Z = img.reshape((-1,3))
convert to np.float32
Z = np.float32(Z)
define criteria, number of clusters(K) and apply kmeans()
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0)
K = 3; attemps=3
ret,label,center=cv2.kmeans(Z,K,None,criteria,attemps,cv2.KMEANS_RANDOM_CENTERS)
Now convert back into uint8, and make original image
center = np.uint8(center)
res = center[label.flatten()]; res2 = res.reshape((img.shape))
cv2.imshow('K = ' + str(K),res2);cv2.waitKey(0);cv2.destroyAllWindows()

69

http://uk.mathworks.com/help/stats/kmeans.html

13.12.2020

32

K means
• Different results for different K

K = 2 K = 3

K = 4 K = 5

70

K means
• Different results for different runs due to random initialisation.

• Replicates (running the algorithm multiple times) can produce more consistent results

K = 3 K = 3

[clusterID, clusterCentre] = kmeans(R, 3, 'Replicates', 3);

71

13.12.2020

33

OpenCV documentation and examples
• https://docs.opencv.org/3.4.3/d1/d5c/tutorial_py_kmeans_opencv.html

72

Mathematical morphology
• A related class of nonlinear image processing techniques is known as

mathematical morphology.
• These technique also use kernels, which are called structuring

elements in the nomenclature of this branch of image processing.
• There are two basic operations, erosion and dilation. Erosion is like a

min filter (over the structuring element extent on the image), and
dilation is like a max filter. These operations are often used on binary
images, but can be used on grayscale images too.

• A closing is dilation, followed by erosion. It fills holes smaller than the
structuring element. An opening is erosion, followed by dilation. It
removes objects smaller than the structuring element.

• Mathematical morphology may be useful in “cleaning up”
segmentations.

74

13.12.2020

34

Erosion and Dilation

Original image

J = cv2.erode(I,np.ones((3,3),
np.uint8))

cv2.imshow('erosion',J)

J = cv2.dilate(I,np.ones((3,3),
np.uint8))

cv2.imshow('dilation',J)

75

Closing and Opening
J = cv2.morphologyEx(I,
cv2.MORPH_CLOSE,
np.ones((3,3),np.uint8))
cv2.imshow('closing',J)

J = cv2.morphologyEx(I,
cv2.MORPH_OPEN,
np.ones((3,3),np.uint8))
cv2.imshow('opening',J)

K = np.ones((3,3),np.uint8)
J1 = cv2.morphologyEx(I,
cv2.MORPH_OPEN, K)
J2 = cv2.morphologyEx(J1,
cv2.MORPH_CLOSE, K)
cv2.imshow('opening-
closing',J2)

76

13.12.2020

35

Some other handy morphological
functions

• imfill can be used to fill holes in each binary image region

• bwareafilt can filter regions in a binary image based on size (in pixels)

• You can also use regionprops to get the properties of each region, like its area,
perimeter, etc. Based on this, you can filter regions to keep those within
prescribed limits

I = imread('coins.png');
T = graythresh(I); % otsu threshold
J = I > 255*T;
K = imfill(J,'holes');
imshowpair(J,K,'montage');

J K

I = imread('text.png');
J = bwareafilt(I,[40 50]);
imshowpair(I,J,'montage');

I J

77

Evaluating segmentations
• What makes for a “good” segmentation?

78

http://uk.mathworks.com/help/images/ref/imfill.html
http://uk.mathworks.com/help/images/ref/bwareafilt.html
http://uk.mathworks.com/help/images/ref/regionprops.html

13.12.2020

36

Evaluating segmentations
• A common approach is to establish some ground truth. This can specify, for each pixel

in the image if it should be part of the segmentation (or not).
• Example data for skin detection:

http://web.fsktm.um.edu.my/~cschan/downloads_skin_dataset.html

79

The Segmentation Benchmark Datasets

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/

http://host.robots.ox.ac.uk/pascal/VOC/

The PASCAL Visual Object Classes

• Provides standardised image data sets for object
class recognition and segmentation
• Enables evaluation and comparison of different
methods

Figure from Arbelaez et al. Semantic Segmentation using
Regions and Parts, 2012, CVPR. (figure 5)

80

http://web.fsktm.um.edu.my/~cschan/downloads_skin_dataset.html
http://pascallin2.ecs.soton.ac.uk/

13.12.2020

37

Evaluating segmentations
• One can perform the segmentation, and using the ground truth, categorise pixels as:

– True positives: correctly detected skin pixels
– True negatives: correctly detected non-skin (background) pixels
– False positives: non-skin pixels incorrectly detected as skin pixels
– False negatives: skin pixels missed by the skin detector

81

Accuracy, sensitivity, specificity
• One can then produce quantitative measures such as:

◦ Accuracy
ACC = (TP + TN) / (TP + FP + FN + TN)

This measures the number of correctly labelled pixels in the image

◦ Sensitivity, or True Positive Rate (Recall)
SENS = TP / P = TP / (TP + FN)

This measures the percentage of positives correctly labelled

◦ Specificity, or True Negative Rate
SPEC = TN / N = (TN + FP)

This measures the percentage of negatives correctly labelled

◦ Precision or Positive Predictive Value
PREC = TP / (TP+FP)

This measures the percentage of positives among all predicted positives

where TP and TN are the number of true positives and true negatives, and FP and
FN are the number of false positives and false negatives.
• A perfect result would have 100% accuracy, sensitivity, and specificity.

82

13.12.2020

38

Example
I = cv2.imread("face.jpg")
T = cv2.imread("groundTruth.png",0)

YUV= cv2.cvtColor(I, cv2.COLOR_RGB2YCR_CB);
U=YUV[:,:,1]; V=YUV[:,:,2]; R=I[:,:,2]; G=I[:,:,1]; B=I[:,:,0]
rows,cols,planes=I.shape

Al-Tairi et al.
skin=np.zeros([rows,cols],dtype=np.uint8)
ind=(80 < U) & (U < 130) & (136 < V) & (V <= 200) & (V > U) & (R > 80) & (G
> 30) & (B>15) & (abs(R-G) > 15)
skin[ind]=255

cv2.imshow('Image',I)
cv2.imshow('Ground Truth',T)
cv2.imshow('AL-Tairi',skin)

tpInd = (skin == 255) & (T == 255)
tnInd = (skin == 0) & (T == 0)
fpInd = (skin == 255) & (T == 0)
fnInd = (skin == 0) & (T == 255)

83

Example, part 2
tpImage = np.zeros([rows, cols],dtype=np.uint8)
tpImage[tpInd] = 255
tnImage = np.zeros([rows, cols],dtype=np.uint8)
tnImage[tnInd] = 255
fpImage = np.zeros([rows, cols],dtype=np.uint8)
fpImage[fpInd] = 255
fnImage = np.zeros([rows, cols],dtype=np.uint8)
fnImage[fnInd] = 255
cv2.imshow('true positives',tpImage)
cv2.imshow('true negatives',tnImage)
cv2.imshow('false positives',fpImage)
cv2.imshow('false negatives',fnImage)
tp = len(tpInd); tn = len(tnInd); fp = len(fpInd); fn = len(fnInd)
Compute measures
accuracy = (tp + tn)/ (tp + tn + fp + fn)
sens = tp/(tp + fn); spec = tn/(tn + fp)
print('Accuracy = ' + str(accuracy) + ', sensitivity = ' + str(sens) + ',
specificity = ' + str(spec))
cv2.waitKey(0); cv2.destroyAllWindows()

>> Accuracy = 0.8979 , sensitivity = 0.98949, specificity = 0.82425

Interpretation: Sensitivity is high so many skin pixels correctly identified. However, specificity is lower,
due primarily to the false positives. Overall, roughly 90% of the pixels are correctly labelled.

84

13.12.2020

39

ROC curve
• A Receiver Operating Characteristic curve plots the sensitivity as a function of

1 – specificity.
• In our previous example, SENS = 0.99, 1 – SPEC = 0.18
• One can sweep a parameter that trades of sensitivity vs specificity to generate

a curve. The area under the curve gives another way to characterise the
quality of a classification method.

SE
N

S

1 - SPEC

1

1

85

Confusion matrix
• The confusion matrix describes the number of predicted labels vs the ground

truth. In this example, we have skin and non-skin pixels.

• A perfect result would be a diagonal matrix (no FPs or FNs)

• The confusion matrix generalises to multiple labels

Predicted

Skin Non-skin

Actual Skin TP FN

Non-skin FP TN

Predicted

Label 1 Label 2 Label 3

Actual
Label 1

Label 2

Label 3

86

13.12.2020

40

Region Growing labels pixels into segmentation labels based
on:

• predefined criteria for growth
• starting from a set of seeds

• Important : growth or similarity criterion selected
according to the problem under consideration

• Can be based on color, image statistics etc.

• Stop the region growing when no more pixels change label

Segmentation based on Region Growing

https://www.youtube.com/watch?v=WJGcaSmVE0E

87

Region Growing

88

13.12.2020

41

from Bryan Morse, BYU

89

Region Growing

Next: A list-based efficient processing in C++ for a fast
implementation: recursive

90

13.12.2020

42

// Nice Simple Example C++ code for 3D segmentation:
// check it out; for questions: send an email to me

struct vector3Df {float x, y, z;
};

//INITIALIZE YOUR LISTS
std::vector<vector3Df> *current; //holds current region voxels
std::vector<vector3Df> *next; //holds voxels to be analyzed on the next iteration
std::vector<vector3Df> *swap; //pointer used in swapping the two lists
std::vector<vector3Df>::iterator it;
int Y = xSize; int Z = xSize*ySize; int x,y,z,i,j,k;
vector3Df point3D;
point3D.x = seedX; point3D.y = seedY; point3D.z = seedZ; // the seed location: a 3D vector

int OBJECT= 2;
int MARKED = 1;

next = new std::vector<vector3Df>;
current = new std::vector<vector3Df>;

next->clear(); //clear the two lists
current->clear();
//initialize the current list with the seed voxel
current->push_back(point3D);

Region Growing Algorithm ~ Connected Components

91

while(!current->empty()) //while there are still current voxels
{for (it = current->begin(); it != current->end(); it++) { //for each current voxel

x = (int)it->x; y = (int)it->y; z = (int)it->z;
segMap[x+y*Y+z*Z] = OBJECT; //mark current voxel as object in the seg. map

for(i=-1;i<=1;i++)for(j=-1;j<=1;j++)for(k=-1;k<=1;k++)
{ //******* for each nbr of current voxel

// check if its in the volume
if (x+i<0 || x+i>=xSize || y+j<0 ||y+j>=ySize || z+k<0 || z+k>=zSize) continue;

//DESIGN: Similarity Criterion
if((segMap[(x+i)+(y+j)*Y+(z+k)*Z] ~= OBJECT && (fabs(Image[x+y*Y+z*Z] -

Image[(x+i)+(y+j)*Y+(z+k)*Z]) < epsilon)) {
segMap[(x+i)+(y+j)*Y+(z+k)*Z] = OBJECT; //mark the nbr as object/connected
point3D.x = x+i; point3D.y = y+j; point3D.z = z+k; //add it to the "next" list
next->push_back(point3D); }

} //*********end for each nbr of current voxel
}//********for each current voxel

swap = current; //swap “current" and "next" lists... old "next" is new “current"
current = next;
next = swap; next->clear();

}// end while //free allocated memory ;
delete next; delete current;

Region Growing Algorithm (cont’d)~ Connected Comp

92

13.12.2020

43

Segmentation based on Region Growing

Region growing started with a seed point in the brain (e.g. the red dot shown)

For example, here adds neighboring points to the region if they are less than a
threshold away from a running (re-calculated or updated every step) mean
intensity

93

Figure from: “Development of an anatomically detailed MRI-derived rabbit ventricular model and assessment of its impact on simulations of
electrophysiological function”, American J Physiology, MJ Bishop et al 2010

Next step after
segmentation of
multi-region
scenes or objects
is to label different
parts separately.
How? We can use
connected
component
labeling

94

13.12.2020

44

How to label (or color)
separately connected
segmented regions in
an image ?

Connected Component Labeling

http://imagej.net/MorphoLibJ

First
segment

95

Pixel Connectivity
Q: are the dark pixels in this image
connected?

To answer that: We need to define
which pixels are counted as neighbors

96

13.12.2020

45

Spatial Connectedness: going beyond color
• Colour (or intensity) is a powerful feature and typically used in image segmentation.

However, typically there is additional contextual information we can use, often encoded
spatially.

• When segmenting a pixel p, we might consider pixels in p’s neighbourhood.
• This require a definition what a neighbouring pixel is.

Common 2D
neighbourhoods

Common 3D
neighbourhoods

4-neighbourhood 8-neighbourhood

6-neighbourhood 18-neighbourhood 26-neighbourhood

https://www.linkedin.com/pulse/20140506202304-14648565-3d-is-not-1-5-times-2d

97

THQ: Connected regions: How many
connected components for dark/light
pixels? Using 4 or 8 connectivity ?

99

13.12.2020

46

E.g. Use region growing starting from the top left corner of the image,
set it to label L=1. Then find the first unlabelled pixel, set to L=2, use
region growing, and continue in this way. Here, region growing algo,
growing criteria: Neighbor pixel has the same label as the current pixel.

Connected Components Labeling

100

Assuming that dark pixels are the background, others are foreground

Foreground Connected Components Labeling

101

13.12.2020

47

Check this algorithm on connected component labeling

#B is the binary image input.
#L is the labeled image output
def ConnectedComponents(B):

X,Y = B.shape
L = np.zeros([X,Y])
n=0
for (y,x) in B:

if B[y][x] and L[y][x]==0:
label(x,y,n,B,L)
n = n + 1

return L

102

You need to define your neighborhood function N(.,.). E.g. 4 nbhd: x,y should be
one of: (xs+1,ys), (xs-1,ys), (xs,ys+1), (xs,ys-1)

Recursively give label to this pixel
and all it foreground neighbours.
def label(x_start,y_start,n,B,L):

L[y_start][x_start]= n
for (y,x) in N[y_start][x_start]:

if L[y][x]==0 and B[y][x]:
label(x,y,n,B,L)

103

13.12.2020

48

M. Niethammer

Recall Segmentation based on Thresholding

104

M. Niethammer

105

13.12.2020

49

M. Niethammer

106

M. Niethammer

107

13.12.2020

50

Reading Assignments:
[Klette Book]

[Gonzalez and Woods] 10.3 : very limited
R. Szeliski Comp Vision Book: Section 5.3

END OF LECTURE

Recall Learning objectives of the week: Students are able to:

3. Define and construct segmentation, feature extraction, and visual
motion estimation algorithms to extract relevant information from
images

Note that Segmentation has a vast literature, there are many more
methods currently used in Computer Vision.
We just studied the basic methods, but they are important in
understanding the idea of segmentation and data clustering.

108

Extra Material for those interested

109

13.12.2020

51

Effect of Intensity Inhomogeneity in the Background

Iterative threshold won’t work!

110

Basic segmentation with e.g. İterative thresholding won’t work when
there is background intensity variation in the image

111

13.12.2020

52

Background Normalization for better Thresholding

• Approximate the intensity values of the image by as simple
function such as a plane.

• The function fit is determined in large part by the gray value of the
background.

• Hence the name Background normalization: one obtains
estimate of the variable background.

• Correct the image by subtracting the background estimate

• Now one can threshold the image appropriately

112

113

13.12.2020

53

Background Light Intensity Problem in Historic Documents

“Historical Handwritten Document Image Segmentation Using Background Light Intensity Normalization” by Zhixin Shi
and Venu Govindaraju

114

Plane fit to background image

“Historical Handwritten Document Image Segmentation Using Background Light Intensity Normalization” by Zhixin Shi
and Venu Govindaraju

Threshold to find a mainly background image

Background Intensity Normalization for historic documents

115

13.12.2020

54

Let us treat an image function as a 3D object (x,y,z): i.e. as a graph of (x,y)
pixel coordinates, and z=I(x,y) image gray value.

Goal: find a plane H with an orientation over the x-y plane using the pixel
coordinates (xi,yi) and their intensity values (zi) coming mainly from the
background (xi,yi,zi) (e.g. One can do a simple tresholding to select mainly bg)

Using a plane equation:

We can minimize:

where the sum is for all the available points in the background image
(thresholding result)

0=+-+ dzByAx
2)(minå +-+

i
iii dzByAx

Background Intensity Normalization

116

“The best fit” linear plane is found (Note: one can also partition the image into
smaller regions and find different planes for each sub-region)

That is, the parameters A, B, d.

Now the approximate background image value for each pixel coordinate (xi,yi)
is:

Background subtracted image can be found by:

where one can appropriately scale the image (e.g. Either add a const such as
255 and normalize the estimated z values to (0,255).

dByAxyxz iiii ++=),(

const y)z(x,– y)(x,I y)(x,I origcorrected +=

Background Intensity Normalization

117

13.12.2020

55

Now binarized with a global threshold

Historical Handwritten Document Image Segmentation Using Background Light Intensity Normalization, Zhixin Shi and
Venu Govindaraju

correctedI

origI

Background Intensity Normalization for historic documents

118

119

13.12.2020

56

120

Variable Thresholding (Adaptive Thresholding)

Threshold value varies over the image
as function of local image
characteristics

• Image f is divided into sub-images fc.
• A threshold is determined

independently in each sub-image.
• If a threshold cannot be determined in

some sub-image, it can be
interpolated from thresholds determined in

neighboring sub-images
• Each sub-image is then processed with

respect to its local threshold.

T=T(f, fc)

121

13.12.2020

57

Interactive segmentation
• Recently a number of interactive segmentation methods have been presented in the

literature. These methods often ask the user to provide some strokes providing seeds.

• The strokes:
– Are used to form a colour model of different regions.
– Also provide spatial context.

http://jgmalcolm.com/pubs/research.html

122

Markov Random Field
• Often, one employs a Markov Random Field to solve this problem.
• In a Markov Random Field (MRF), each pixel in the image is considered a random

variable. It is connected to its adjacent pixels through edges.
• The segmentation label for a pixel depends on two terms:

– A unary term, the cost of assigning a label to a pixel, independent of the
neighbours.

– A pairwise term, the cost of a assigning a label to a pixel based on a neighbour in
the neighbourhood.

pixel

edge

q

The cost of assigning a
label l to pixel q depends
on the image and the
values of labels of the
connected pixels as well.

123

13.12.2020

58

Markov Random Field
• Example

• Unary
– Label 0: -log p(l(q) = 0| image)
– Label 1: -log p(l(q) = 1| image)

• Pairwise

q

0 1
0 0 K
1 K 0

K>0

124

Graph cuts
Source (Label 0)

Sink (Label 1)

Cost to assign to 1

Cost to assign to 0

Cost to split nodes

125

13.12.2020

59

Graph cuts
Source (Label 0)

Sink (Label 1)

Cost to assign to 1

Cost to assign to 0

Cost to split nodes

126

Superpixels
• A popular approach currently in image segmentation is to first group pixels together into

superpixels to form an oversegmentation of the image.
• A superpixel consists of a connected group of pixels that have similar properties, like

colour.
• Then, one can group superpixels together to form the final segmentation. This can be

more efficient than processing each pixel in the image.

128

13.12.2020

60

SLIC
• SLIC (Simple Linear Iterative Clustering) is a popular superpixel segmentation

technique, recently published by [Achanta et al. 2012]
• It performs a local grouping of pixels in 5D space defined by the LAB colours

and x, y positions of the pixels [LABXY]. A distance measure in this 5D space
combines distance measured in colour and the image itself

• It defines K regularly spaced cluster centres, and moves them to locations
where the edge response is smallest, and assigns pixels to clusters based on
distance.

129

• Using following imports
◦ from skimage.segmentation import slic
◦ from skimage.segmentation import mark_boundaries

• The syntax is

Example

from skimage import io
image = img_as_float(io.imread("Sucess-Kid.png"))
fig = plt.figure("Superpixels -- %d segments" % (numSegments))
ax = fig.add_subplot(1, 1, 1)
ax.imshow(mark_boundaries(image, segments))

segments = slic(image, n_segments = numSegments, sigma = 5)

130

http://infoscience.epfl.ch/record/177415/files/Superpixel_PAMI2011-2.pdf

13.12.2020

61

Distance transform
• A visual example

dist = cv2.distanceTransform(I, cv2.DIST_L2, 3)
dist = dist / dist.max()
cv2.imshow('dist image', dist)
cv2.waitKey(0)

dist = cv2. distanceTransform(np.uint8(~(I.astype(np.bool_))),
cv2.DIST_L2, 3)
dist = dist / dist.max()
cv2.imshow('dist image', dist)
cv2.waitKey(0)

132

Watershed segmentation
• Consider an image D as a topographical surface, where the intensity of the image is

mapped to a height.

• Imagine it starts raining. Excluding the background, water will start to accumulate in the
basins (lowest points). We can think of each basin as a region. As water is continually
added, eventually regions will collide at ridge lines.

133

13.12.2020

62

Watershed segmentation
• The watershed function in OpenCV computes these ridge lines, and returns a matrix L

with labels grouping pixels into regions based on the catchment basin.

• Here, multiple regions are detected, even though circles are connected.

Marker labelling
ret, markers = cv.connectedComponents(sure_fg)imshow(L, []);
markers = cv.watershed(img,markers)

134

Marker-controlled watershed
• On a grayscale image, one typically applies watershed to the distance transform of an

edge map. However, this will result in over-segmentation.
• Instead, one can provide markers (also known as seeds). Each seed defines a catchment

basin (region in the final segmentation).
• Nearby regions grow until they collide with other regions.

image markers (on image) segmentation

B = imregionalmin(I); Enew = imimposemin(E, B);
L = cv2.watershed(Enew);
I[L == -1] = [255,0,0]
cv2.imshow(‘result‘, I);

I = cv2.imread('cells2.png', 0)
I = (I / 255.)
K = 0.5* np.asarray([[-1, 0, 1]])
Ix = cv2.filter2D(I, -1, K)
Ix = np.clip(Ix, 0, 1)
Ix = Ix / Ix.max()
Iy = cv2.filter2D(I, -1, K.T)
Iy = np.clip(Iy, 0, 1)
Iy = Iy / Iy.max()
E = np.sqrt(Ix**2 + Iy**2)

* imregoionalmin, imimposemin does not exist in opencv
built-in. You have to implement on your own if you want
to run this code.

135

http://uk.mathworks.com/help/images/ref/watershed.html?searchHighlight=watershed

13.12.2020

63

Hysteresis thresholding
• Hysteresis thresholding applies two thresholds to achieve a segmentation.
• An region will be labelled as foreground if

– It contains connected to a pixel with intensity greater than Thigh and
– All its pixels have an intensity greater then Tlow,

• Goal: Perform a segmentation of the brighter blobs

• Hysteresis thresholding will select brighter blobs using Thigh, and for those blobs, use the
shape from Tlow.

I>Thigh I>Tlow

Finds brighter blobs, but shapes
are not correct.

Shapes are (mostly) correct but
darker blobs included.

136

This code labels the regions detected using the low thresholded image (L), and
uses the high thresholded image (H) to select valid regions. The pixels from L that
are part of a valid region are retained.

Hysteresis thresholding
I = cv2.imread("dots.png",0)
cv2.imshow('image', I); cv2.waitKey(0)

Thigh = 150
Tlow = 80
H = np.uint8((I > Thigh) * 255)
cv2.imshow('High threshold', H); cv2.waitKey(0)

L = np.uint8((I > Tlow) * 255)
cv2.imshow('Low threshold', L); cv2.waitKey(0)

ret, markers = cv2.connectedComponents(L)
valid_markers = np.unique(markers*(H/255))
isin = np.isin(markers, valid_markers[1:])
cv2.imshow('Hysteresis tresholding result', np.uint8(isin
* 255))
cv2.waitKey(0)

137

