

## 3D Vision

 BLG 634ESpring 2022
Lecture: Introduction to 3D Vision

Professor: Gozde UNAL

Some material courtesy of :

- Greg Slabaugh @ Queen's Mary University, London
- Stanford University CS231A Lectures
- Angjoo Kanazawa CS294
- S Seitz "3D Computer Vision: Past, Present, and Future", 2012.

1

## Computer Vision

$\Rightarrow$ Computer vision is a scientific discipline that studies how computers can efficiently perceive, process, and evaluate visual data such as images and video in order to understand the surroundings, objects, scenes, actions, etc...

## Artificial vision:

- potential of relieving humans of tasks that are
- dangerous,
- monotonous, boring or unnecessary time consuming such as driving/self driving cars; surveillance
- infeasible to quickly process and sort through, extract info from big visual data
- Replace lost vision skills or augment capabilities
- Automate tasks such as navigation, obstacle avoidance, recognition, etc.

Alan Turing's remarks in 1950's, 'Computing Machinery and Intelligence', Mind: The problem was assumed to be easier in the beginning and only processing power and limited storage was regarded as the major hurdle.

2


## What is 3D Computer Vision?

3D computer vision can be described as extraction of 3D information from digital images, and 3D models


4

## Computer Vision vs Computer Graphics



Image formation: how objects give rise to images: 3D to 2D (loss of information)

Computer Vision: Inverse problem of image formation: 2D to 3D uses images to recover a description of objects in space III-posed since we lose 1 dimension coming from 3D world to 2D images

5

3D Vision- The Fundamental Problem
Problem: how to recover the 3-D geometry of the scene?
Q : What makes this problem difficult?
A: we typically do NOT know the viewpoints from which the images were taken. Furthermore, some of the camera parameters such as the focal length is also unknown.


Input: Corresponding "features" in multiple perspective images. Output: Camera pose, calibration, scene structure representation.

Difficult problem, but under some reasonable assumptions, we can recover the output
6

## Stereovision

- In stereovision, two or more views of the scene are available from different vantage points, for example
- From two separate cameras
- A single camera that is translated
- By finding matches (correspondences) between the images, the relative distance of objects from the camera (depth) can be determined.
- The human visual system achieves stereopsis with binocular vision.
- Two images of the world are captured by the eyes ( $\sim 65 \mathrm{~mm}$ apart)
- Receptive fields fuse images and recognise different positions
- Disparity (the amount of displacement) is used to infer depth

7

| Human 3D Vision |  |
| :---: | :---: |

8


3-D movies are actually two movies being shown at the same time through two projectors. The two movies are filmed from two slightly different camera locations (same distance as our eyes). Each individual movie is then projected from different sides of the audience onto a metal screen. The movies are projected through a nonarizing filter.

## 3D movies



A 3D projector

http://hubpages.com/entertainment/How-3D-Movies-Work

3D glasses used to watch stereoscopic 3D movies contain two polarizing filters.
One of the glass is coated with a vertical polarization filter - that is all light passing through it is vertically polarized.
The other one is coated with a horizontal polarization filter - that is all light passing through is horizontally polarized.

Note: Most of the modern stereoscopic glasses contain circular polarizing
filters but it is much easier to explain and understand linear polarization
11


12



14


## Recovering 3D models of the environments



16


17


18





23


24


25


26

## StereoVision: Passive Triangulation

- Correspondence problem
- Geometric constraints $\Rightarrow$ search along epipolar lines
- 3D reconstruction of matched pairs by triangulation


27


## Accurate 3D Object Prototyping


Scanning Michelangelo's "The David"

- The Digital Michelangelo Project

> - http://graphics.stanford.edu/projects/mich/ model of the entire 5-

- 2 BILLION polygons, accuracy to .29 mm meter statue


## Active Triangulation: Structured Light

- One of the cameras is replaced by a light emitter
- Correspondence problem is solved by searching the pattern in the camera image (pattern decoding)



31

## Multiview Geometry

Estimate 3D properties of the world from multiple views


## Multi-view Stereo

Input: calibrated images from several viewpoints (known camera: intrinsics and extrinsics)
Output: 3D object model


Figures by Carlos Hernandez


Slide credit: Noah Snavely

## Photo Tourism

http://grail.cs.washington.edu/projects/rome/


Takes as input large collections of images from either personal photo collections or Internet photo sharing sites (a), and automatically computes each photo's viewpoint and a sparse 3D model of the scene (b).
http://phototour.cs.washington.edu/
35

## Human body mapping: 2D to 3D

http://densepose.org/ by R. Alp Güler et al.


Dense human pose estimation aims at mapping all human pixels of an RGB image to the 3D surface of the human body.

## 3D Vision- Image Alignment and Mosaicing



Even if our final goal is not for a 3-D model, understanding the 3-D geometry encoded in the images facilitates many image processing tasks 37


## 3D Vision: Augmented Reality AR


e.g. Real-Time Virtual Object Insertion into your own home-made video


## Stereopsis: Computing disparity ?

x: 2 D point in left image


By finding correspondences between images.
Goal: given $\mathbf{x}$ in image 1 , find $\mathbf{x}^{\prime}$ image 2. The
$\mathbf{X}$ : Point in 3D
disparity is simply $d=\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|$.
41

## Finding correspondences

- Given a point in one image, how do we find its match in the other image?


Left image


Right image

- Brute force: search every pixel in the right image to find a match.
- Actually we can do better...


## Epipolar geometry

- Epipolar geometry can be used to constrain the search to a line.

$\Rightarrow$ Potential matches for $\mathbf{x}$ must be on the line $\ell^{\prime}$.
Similarly, potential matches for $\mathbf{x}^{\prime}$ have to be on the line $\ell$.


## An example


$\Rightarrow$ This example shows epipolar lines in both images

## Epipolar Geometry

- Epipolar geometry can be used to constrain the search to a line.

- C, C', and $\mathbf{X}$ are three 3D points that form the epipolar plane.
- The baseline connects the two camera centres. The epipoles e and e' are where the baseline intersects the image plane.
- All epipolar lines in an image will go through the epipole, regardless of $\mathbf{X}$.

45


46

## Image Rectification


(2)


If the two cameras are aligned to be coplanar, the search is simplified to one dimension - a horizontal line parallel to the baseline between the cameras

## Dense stereo matching

- To compute disparity. The standard algorithm to this is

1. Find a sparse set of inlier correspondences, estimate $\mathbf{F}$
2. If necessary, rectify the stereo images
3. For each pixel $\mathbf{x}$ in image 1, search along the epipolar line for a match $\mathbf{x}$
4. Save the disparity $\mathrm{d}=\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|$


## Example



Depth/disparity estimation from stereo images
Middlebury dataset:
http://vision.middlebury.edu/stereo/
with GT disparities
http://vision.middlebury.edu/stereo/data/scenes2014/
Kitti
http://www.cvlibs.net/datasets/kitti/

49


50

## Upgrading to depth

- Depth will be inversely proportional to disparity.
- To upgrade to depth, we must know the baseline $B$ and the focal length $f$. But how to determine these?
- Normally these will come from camera calibration.


51

## Once you have disparity aka how much did the

 pixel move, you can get (relative) depth

## Summary: 3D Vision

Want to infer some representation of the world from collection of images

Complexity of the physical world >> complexity of the image measurements

- Projecting from 3D world to 2D images: 1 dimension is lost

- Cannot simply invert and reconstruct the "true" scene from a number of images
- We can reconstruct at best a "MODEL" of the world
- Modeling: a form of engineering art
- Depends on the applications/tasks at hand
- Visualize the scene from different viewpoints
- Recognize objects, their shape or motion, actions,
- Where am I? How should I navigate in the world? What to do next? ...


## Now, new norm in 3D Vision is becoming Learning Methods (just past 1-2 years)

## Deep Methods in 3D

We will explore these together in the last part of the course.

## Course Requirements

## Basic Computer Vision and/or Image Processing knowledge is required.

See the Syllabus


## 3D Vision A little bit history

## 3D Vision: A little bit History

## 1963: Blocks World [Roberts, mit ph.D]



Larry Roberts PhD Thesis, MIT, 1963, Machine Perception of
Three-Dimensional Solids


60

Photometric Stereo
Robert Woodham 1980


Single camera, multiple-lights, what is the surface normal?
D. Forsyth book Section 2.2.4

## Photometric Stereo



Photometric Stereo results in per-pixel high resolution capture

62


## The president in 3D: <br> https://www.youtube.com/watch?v=4GiLAOtjHNo\&t=167s

High-resolution 3D Capture


64

Recent instantiation of Photometric Stereo: GelSight

Sensing Surfaces with Gelsight:
https://www.youtube.com/watch?v=S7gXih4XS7A


## Uses of Photometric Stereo

Retrographic sensing for the measurement of surface texture and shape

Author(s)
Adelson, Edward H.; Johnson, Micah K.
 for the measurement of surface texture and shape.pdf ( 9.844 Mb )
Sensing
Surfaces with
GelSight
https://www.youtube.com/watch?v=S7gXih4XS7A
Johnson, M.K., and E.H. Adelson. "Retrographic sensing for the measurement of surface texture and shape." Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on. 2009. 1070-1077.



68

## 3D Vision: A little bit History

Shape-from-silhouettes...
Other notable results include:
Theory: visual hull

- A. Laurentini, "The visual imil congat for silhourteatraski image undsistanding". IEEE Trans. Pattern Analysis and Machine Intelligence. 1994, pp. 150-162.

Efficient Algorithms

- Richard Szeliski. Baniel sctree zastruction fromimage caquancer CVGIP: Image Understanding, 58(1):23-32, July 1993.

Usage in graphics

- W. Matusik, C. Buehler, R. Raskar, L. McMillan, and S. Gortier, Image-Based Visuai Hiulls. In Proc. SIGGRAPH 2000.


## Next major landmark: <br> 3D Vision: A little bit History

1981: Essential Matrix [Longuet-Higgins, Nature]
H. Christopher Longuet-Higgins (September 1981). "A computer algorithm for reconstructing a scene from two projections". Nature 293 (5828): 133-135
$3 \times 3$ Matrix mapping points to epipolar lines

- corresponding points $p, p^{\prime}$ satisfy $p^{\top} E p^{\prime}=0$
- camera matrices can be computed from E

Historical precedents

- Chasles, Hesse, Sturm
- introduced key ideas 100 years earlier [1863-9]

This work
inspired an whole area of 3D computer vision, now known as Multiview Geometry

- Kruppa's "Structure-from-motion" theorem [1913]
- rediscovered by Ullman [1977]

Led to the field of "multi-view geometry" in the 1990s

- Fundamental matrix [Faugeras; Hartley ECCV 1992], uncalibrated case, song!
- Trifocal tensor [Hartley; Shashua 1995], 3 view case
- Self-calibration, stratification, [Faugeras, ECCV 1992]

70

## 3D Vision: A little bit History

1987: Marching Cubes [Lorensen \& cline, SIGGRAPH]

Q:
Maybe
not 3D
Vision?


## From Volume to Surface mesh

- Start at voxel containing surface
- Add polygon(s) based on configuration table
- earlier: 1970's Hummel \& Zucker, 3D edge finding
- March to next voxel

To this day, still dominant meshing alg!


71


72

3D Vision: A little bit History
1997: Multi-view Stereo


Voxel Coloring
Seitz \& Dver, CVPR 1997


Level-set stereo faugeras \& Keriven, ECCV 1998 Kutulakos \& Seitz, ICCV 1999 Fromherz \& Bichsel. ISPRS 1995

## Space Carving + Level Set Stereo

- reconstruct 3D directly rather than image matching
- key work in photogrammetry: object-based least squares correlation [Helava; Ebner 1988] also Grün \& Baltsavias: Geometrically constrained least squares matching PERS, 1988.
- proper modeling of visibility
- provable convergence properties


## 3D Vision: A little bit History

1998: Uncalibrated 3D flollefers, Koch, Van Gool, Iccev


3D stereo models from uncalibrated video

- culmination of many research advances
- tracking, SfM, self-calibration, stereo, texture-mapping
, used SfM approach by [Beardsley, Torr, Zisserman., ECCV 1996]
- major milestone for projective reconstruction research

74
$\square$

