
25.04.2022

1

3D Vision
BLG 634E

Some slides are from
Profs. Greg Slabaugh
and S. Jalali @ City
University London

Professor: Gozde UNAL

Feature Extraction

1

Recall: Estimating a Homography

4

25.04.2022

2

Estimating Fundamental Matrix

5

Feature Extraction and Matching

6

25.04.2022

3

Feature Extraction and Matching

7

Estimating a homography for Panorama

8

25.04.2022

4

Challenges
Different viewpoints, color, scale, background, occlusions, shapes, rotation.

a trade-off between invariance and object selectivity

9

Solution

10a) Caltech101 b) Scenes c)Soccer d) Flowers

What features can be used: Color features? Shape features?
- Scale Invariant? Shift Invariant?

10

25.04.2022

5

Feature Extraction
• Image Features (some examples)

• Corner Features: Harris, Min eigenvalue etc.

• HOG (Histogram of Oriented Gradients)

• Local Binary Patterns

• Bag of features

• SIFT (Scale Invariant Feature Transform)

• SURF (Speeded Up Robust Features)

• Others: Blob, Gabor, Haar like features, …

• MSER: maximal stable extremal region (region growing idea)

11

Gabor Filters

• Frequency and orientation representations of Gabor filters are inspired by those
of the human visual system. Used for mainly texture representation and
discrimination

• In the spatial domain, a 2D Gabor filter is a Gaussian kernel function modulated
by a complex sinusoid. The real component is modulated by a sinusoidal plane
wave as here:

X = xcosθ + ysinθ; Y = −xsinθ + ycosθ

Teta: amount of rotation

12

25.04.2022

6

Gabor Filters

http://www.mathworks.com/matlabcentral/fileexchange/44630-gabor-feature-extraction

13

Local Binary Patterns Concept

• Divide the examined window to cells (e.g. 16x16 pixels for each cell).
• For each pixel in a cell, compare the pixel to each of its 8 neighbors (on its

left-top, left-middle, left-bottom, right-top, etc.). Follow the pixels along a
circle, i.e. clockwise or counter-clockwise.

14

http://www.mathworks.com/matlabcentral/fileexchange/44630-gabor-feature-extraction

25.04.2022

7

Local Binary Patterns Concept

• Where the center pixel's value is greater than the neighbor, write "1".
Otherwise, write "0". This gives an 8-digit binary number (which is usually
converted to decimal for convenience).

• Compute the histogram, over the cell, of the frequency of each "number"
occurring (i.e., each combination of which pixels are smaller and which are
greater than the center).

• Optionally normalize the histogram.
• Concatenate normalized histograms of all cells. This gives the feature

vector for the window.

15

brickWall = imread('bricks.jpg');
rotatedBrickWall = imread('bricksRotated.jpg');
carpet = imread('carpet.jpg');

lbpBricks1 = extractLBPFeatures(brickWall,'Upright',false);
lbpBricks2 =
extractLBPFeatures(rotatedBrickWall,'Upright',false);
lbpCarpet = extractLBPFeatures(carpet,'Upright',false);

brickVsBrick = (lbpBricks1 - lbpBricks2).^2;
brickVsCarpet = (lbpBricks1 - lbpCarpet).^2;
figure bar([brickVsBrick; brickVsCarpet]','grouped')
title('Squared Error of LBP Histograms') xlabel('LBP
Histogram Bins')
legend('Bricks vs Rotated Bricks','Bricks vs Carpet’)

Matlab Example

16

25.04.2022

8

Histogram of Oriented Gradients

• The histogram of oriented gradients (HOG) is a feature descriptor used in
computer vision and image processing for the purpose of object detection.

• The technique counts occurrences of gradient orientation in localized portions
of an image.

• Similar to that of scale-invariant feature transform descriptors (SIFT) and
Speeded Up Robust Features (SURF) but differs in that it is computed on a
dense grid of uniformly spaced cells and uses overlapping local contrast
normalization for improved accuracy.

https://www.youtube.com/watch?v=0Zib1YEE4LU&feature=plcp

18

Dictionary of Features Models

Motivated from Bag of Words: Classify text in terms of frequency of words in a dictionary

19

https://www.youtube.com/watch?v=0Zib1YEE4LU&feature=plcp

25.04.2022

9

Bag of Features Models

• Texture is characterized by the repetition of basic elements or textons (dictionary elements)
• the identity of textons, not their spatial arrangement, matters

20

Bag of Features Models

21

25.04.2022

10

Bag of features (words)

Stack visual word histograms
as columns in matrix

Throw away spatial information!

DictionaryHistogramVisual wordsInterest regions

2

20

4

415

35 18

39
21

10
61

2

3

4

1

https://www.youtube.com/watch?v=iGZpJZhqEME&feature=plcp

22

Bag of Features

1. Extract features
2. Learn “visual vocabulary”
3. Quantize features using visual vocabulary
4. Represent images by frequencies of “visual words”

Note that for the bag of features approach to be effective, majority of each
image's area must be occupied by the subject of the category, for example, an
object or a type of scene.

23

https://www.youtube.com/watch?v=iGZpJZhqEME&feature=plcp

25.04.2022

11

Learning the Visual Vocabulary

24

Learning the Visual Vocabulary

25

25.04.2022

12

Learning the Visual Vocabulary

How to choose vocabulary
size?
• Too small: visual words not
representative of all patches
• Too large: quantization
artifacts, overfitting

26

Spatial pyramid representation
• Extension of a bag of features
• Get the histograms at several levels of resolution

27

25.04.2022

13

Let’s Return to this Problem…
Want to find

… in here

28

Invariant Local Features
• Image content is transformed into local feature coordinates that are

invariant to translation, rotation, scale, and other imaging parameters

SIFT Features

29

25.04.2022

14

Advantages of invariant local
features

• Locality: features are local, so robust to occlusion and clutter (no prior
segmentation)

• Distinctiveness: individual features can be matched to a large
database of objects

• Quantity: many features can be generated for even small objects

• Efficiency: close to real-time performance

30

SIFT (Scale Invariant Feature Transform)

• Invariances:

◦ Scaling

◦ Rotation

◦ Illumination

◦ Deformation

Yes

Yes

Maybe

Yes

Distinctive image features from scale-invariant keypoints.
David G. Lowe, International Journal of Computer Vision, 60, 2 (2004), pp. 91-110.

31

25.04.2022

15

SIFT On-A-Slide

1. Enforce invariance to scale: Compute difference of Gaussians for different
scales;

2. Localizable corner: Find local maxima and minima to get keypoint candidates
3. Eliminate edges: Determine whether the feature is located on an edge or a

corner and eliminate candidates on edges
4. Enforce invariance to orientation: Achieve orientation invariance, by finding

the strongest derivative direction in the smoothed image (possibly multiple
orientations). Rotate patch so that orientation points up.

5. Compute feature signature: Compute a "gradient histogram" of the local
image region in a 4x4 pixel region. Orient so that largest gradient points up
(possibly multiple solutions). Result: feature vector with 128 values (16 fields,
8 gradients).

6. Enforce invariance to illumination change and camera saturation: Normalize
to unit length to increase invariance to illumination. Then threshold all
gradients, to become invariant to camera saturation.

32

SIFT On-A-Slide

1. Enforce invariance to scale: Compute difference of Gaussians for different
scales;

2. Localizable corner: Find local maxima and minima: keypoint candidates
3. Eliminate edges: Determines the feature is located on an edge or a corner

and eliminate candidates on edges
4. Enforce invariance to orientation: Achieve orientation invariance, by finding

the strongest derivative direction in the smoothed image (possibly multiple
orientations). Rotate patch so that orientation points up.

5. Compute feature signature: Compute a "gradient histogram" of the local
image region in a 4x4 pixel region. Orient so that largest gradient points up
(possibly multiple solutions). Result: feature vector with 128 values (16
fields, 8 gradients).

6. Enforce invariance to illumination change and camera saturation: Normalize
to unit length to increase invariance to illumination. Then threshold all
gradients, to become invariant to camera saturation.

33

25.04.2022

16

Build Scale-Space Pyramid
• Scale space is separated into octaves:

◦ Octave 1 uses scale σ
◦ Octave 2 uses scale 2σ, etc.
◦ In each octave, the initial image is repeatedly convolved with

Gaussians to produce a set of scale space images.
◦ Adjacent Gaussians are subtracted to produce the DoG (difference of

Gaussians is a feature enhancement algorithm that involves the
subtraction of one blurred version of an original image from another,
less blurred version of the original)

◦ After each octave, the Gaussian image is down-sampled by a factor
of 2 to produce an image ¼ the size to start the next level.

Blur

Resample

Subtract

Idea:
Find Corners, but scale invariance
Approach:
Run linear filter (diff of Gaussians)
At different resolutions of image pyramid

34

SIFT On-A-Slide

1. Enforce invariance to scale: Compute difference of Gaussians for different
scales;

2. Localizable corner: Find local maxima and minima: keypoint candidates
3. Eliminate edges: Determines the feature is located on an edge or a corner

and eliminate candidates on edges
4. Enforce invariance to orientation: Achieve orientation invariance, by

finding the strongest derivative direction in the smoothed image (possibly
multiple orientations). Rotate patch so that orientation points up.

5. Compute feature signature: Compute a "gradient histogram" of the local
image region in a 4x4 pixel region. Orient so that largest gradient points up
(possibly multiple solutions). Result: feature vector with 128 values (16
fields, 8 gradients).

6. Enforce invariance to illumination change and camera saturation:
Normalize to unit length to increase invariance to illumination. Then
threshold all gradients, to become invariant to camera saturation.

35

25.04.2022

17

Keypoint Localization

• Detect maxima and minima of
difference of Gaussian in scale
space �

• Each point is compared to its 8
neighbours in the current image and
9 neighbours each in the scales
above and below

36

Example of keypoint detection

(a) 233x189 image
(b) 832 DOG extrema

37

25.04.2022

18

Example of keypoint detection
To eliminate undesired keypoints (i.e. edges), SIFT algorithm uses 2x2 Hessian
matrix.
• It determines the feature is located on an edge or a corner. For a stable

feature the curvature across a feature point should be high in more than one
direction.

• A feature with change in only one direction is unstable. A large difference between principal
curvatures across a feature is therefore bad.

• The Hessian matrix gives a short cut so that the principal curvatures (eigenvalues of the shape
operator at the point) across the keypoint do not have to be explicitly calculated to determine if the
change in gradient is large in more than one direction.

• Instead the ratio between the Eigen values of the Hessian matrix can be used. This reduces
processing and increases speed.

The Hessian matrix or Hessian is a square matrix of second-order partial derivatives of a scalar-valued
function, or scalar field. It describes the local curvature of a function of many variables.

38

Example of keypoint detection
Threshold on value at DoG peak and on ratio of principle curvatures
(Similar to Harris corner detector approach)

(c) 729 left after peak value threshold
(d) 536 left after testing ratio of principle curvatures

39

25.04.2022

19

SIFT On-A-Slide

1. Enforce invariance to scale: Compute difference of Gaussians for different
scales;

2. Localizable corner: Find local maxima and minima: keypoint candidates
3. Eliminate edges: Determines the feature is located on an edge or a corner

and eliminate candidates on edges
4. Enforce invariance to orientation: Achieve orientation invariance, by

finding the strongest derivative direction in the smoothed image (possibly
multiple orientations). Rotate patch so that orientation points up.

5. Compute feature signature: Compute a "gradient histogram" of the local
image region in a 4x4 pixel region. Orient so that largest gradient points up
(possibly multiple solutions). Result: feature vector with 128 values (16
fields, 8 gradients).

6. Enforce invariance to illumination change and camera saturation:
Normalize to unit length to increase invariance to illumination. Then
threshold all gradients, to become invariant to camera saturation.

40

Select canonical orientation

• Create histogram of local gradient
directions computed at selected scale

• Assign canonical orientation at peak of
smoothed histogram

• Each key specifies stable 2D
coordinates (x, y, scale, orientation)

0 2p

41

25.04.2022

20

SIFT On-A-Slide

1. Enforce invariance to scale: Compute difference of Gaussians for different
scales;

2. Localizable corner: Find local maxima and minima: keypoint candidates
3. Eliminate edges: Determines the feature is located on an edge or a corner

and eliminate candidates on edges
4. Enforce invariance to orientation: Achieve orientation invariance, by

finding the strongest derivative direction in the smoothed image (possibly
multiple orientations). Rotate patch so that orientation points up.

5. Compute feature signature: Compute a "gradient histogram" of the local
image region in a 4x4 pixel region. Orient so that largest gradient points up
(possibly multiple solutions). Result: feature vector with 128 values (16
fields, 8 gradients).

6. Enforce invariance to illumination change and camera saturation:
Normalize to unit length to increase invariance to illumination. Then
threshold all gradients, to become invariant to camera saturation.

42

SIFT vector formation
• Thresholded image gradients are sampled over 16x16 array of locations in

scale space
• Create array of orientation histograms
• 8 orientations x 4x4 histogram array = 128 dimensions

SIFT Matlab Toolbox: http://www.vlfeat.org/overview/sift.html

43

http://www.vlfeat.org/overview/sift.html

25.04.2022

21

SIFT descriptor vector

44

Matching SIFT features
• Given a feature in I1, how to find the best match in I2?

1. Define distance function that compares two descriptors.
2. Test all the features in I2, find the one with min distance.

a good distance measure is sum of squared difference (SSD)
which is equivalent to the squared L2-norm, also known as
Euclidean norm.)

I1 I2

More on Distance Metrics: http://numerics.mathdotnet.com/Distance.html

∑(xi−yi)2

45

http://numerics.mathdotnet.com/Distance.html

25.04.2022

22

SURF

• Speeded Up Robust Features (SURF) is a local feature detector and descriptor
• Inspired by SIFT.
• The standard version of SURF is several times (x3: you check?) faster than

SIFT.
• Claimed by its authors to be more robust against different image

transformations than SIFT.
• SURF is not as well as SIFT on invariance to illumination change and viewpoint

change

• Speed-up computations by fast approximation of
(i) Hessian matrix and
(ii) descriptor using “integral images”.

See the SURF paper for details:
Herbert Bay, Tinne Tuytelaars, and Luc Van Gool, “SURF: Speeded Up Robust
Features”, European Computer Vision Conference (ECCV), 2006.

46

Feature Extraction

So many computations…

à Integral images for fast feature evaluation

47

25.04.2022

23

Integral Images

• The integral image computes a value
at each pixel (x,y) that is the sum of
the pixel values above and to the left
of (x y) inclusive

• This can quickly be computed in one
pass through the image

• Cumulative row sum:
• s(x, y) = s(x –1, y) + i(x, y)
• Integral image: ii(x, y) = ii(x, y −1) + s(x, y)

• MATLAB:

◦ J = integralImage(I)

48

Integral Images

• Let A,B,C,D be the values of the
integral image at the corners of a
rectangle

• Then the sum of original image
values within the rectangle can be
computed as:

sum = A – B – C + D
• Only 3 additions are required for any

size of rectangle!

49

25.04.2022

24

Integral Image
• The integral image IΣ(x,y) of an image I(x, y) represents the sum of all

pixels in I(x,y) of a rectangular region formed by (0,0) and (x,y).

Using integral images, it takes
only four array references to
calculate the sum of pixels over a
rectangular region of any size.

0 0
(,) (,)

j yi x

i j
I x y I i j

££

S
= =

=åå

50

SURF: Speeded Up Robust Features
• Approximate Lxx, Lyy, and Lxy using box filters.

• Can be computed very fast using integral images!

(box filters shown are 9 x 9 – good approximations for a Gaussian with σ=1.2)

derivative approximation approximationderivative

51

25.04.2022

25

SURF: Speeded Up Robust Features

• In SIFT, images are
repeatedly smoothed with
a Gaussian and
subsequently sub-sampled
in order to achieve a
higher level of the pyramid.

52

SURF: Speeded Up Robust Features
• Alternatively, we can use

filters of larger size on the
original image.

• Due to using integral
images, filters of any size
can be applied at exactly
the same speed!

I = imread('cameraman.tif');
points = detectSURFFeatures(I);
imshow(I); hold on;
plot(points.selectStrongest(10));

53

25.04.2022

26

Example application: Panoramic Images
SIFT/SURF feature matching can be used in image stitching for fully automated
panorama reconstruction from non-panoramic images.

• We need to match (align) images
• Global methods sensitive to occlusion, lighting, parallax (camera displacement)

effects. So look for local features that match well.

54

Panoramic Images
• Detect feature points in both images

• Find corresponding pairs

• Use these pairs to align images (e.g. Estimate geometric transformation such
as homography)

55

