Lecture: Geometric Transforms

Professor: Gozde UNAL

1

Fundamentals you should know

- Pinhole camera
- Homogenous coordinates
- Orthographic/ Perspective projection
- Extrinsic \& Intrinsic Parameters
- Coordinate frames, canonical frames
- SO(3) representations

What do these things mean + how do they play with each other

- Stereo
- Shape from Shading
- Photometric Stereo
- Epipolar Geometry
- Multi-view Stereo

ALL assumes rigid geometry, meaning structure is constant in all images

- Structure-from-motion
- Visual-SLAM
- Bundle-adjustment

3

Recap Image Formation Geometry

Fundamentals

Image formation

Let's design a camera

- Idea 1: put a piece of film in front of an object
- Do we get a reasonable image?
- No. This is a bad camera.

5

Pinhole camera

Add a barrier to block off most of the rays

- This reduces blurring
- The opening known as the aperture
- How does this transform the image?

Pinhole camera

$\mathrm{f}=$ focal length
$\mathrm{c}=$ center of the camera

7

Camera Obscura ("dark chamber")

Gemma Frisius, 1558

- Basic principle known in classical period of China and Greece: Mozi (470-390 BC), Aristotle (384-322 BC)
- Drawing aid for artists: described by Leonardo da Vinci (1452-1519)

Pinhole Photography

https://www.pinholephotography.org
You thought a 1 minute exposure was
long, check out this: 6 month exposure!
Justin Quinnell, The Clifton Suspension Bridge. December 17th 2007 - June 21st 2008
6-month exposure

Also, see OpenShutter project by artist Michael Wesely: https://casanovaarte.com/en/artista/michael-wesely/

9

Adding a lens

A lens focuses light onto the film

- There is a specific distance at which objects are "in focus"
- other points project to a "circle of confusion" in the image
- Changing the shape of the lens changes this distance

The eye

The human eye is a camera

- Iris - colored annulus with radial muscles
- Pupil - the hole (aperture) whose size is controlled by the iris
- What's the "film"?
- photoreceptor cells (rods and cones) in the retina

Can Lengths be trusted ?

Figure by David Forsyth

Lengths can't be trusted...

E.g. compare the length of the bottom border of the wall and the front line of the rug in a room:

Our brains would perceive this as: rug has a shorter length than the wall

We adopt: Müller-Lyer Illusion

15

Focal length

Nodal point is the optical center

Focal length

- Can think of as "zoom"

200mm

50mm

- Also related to field of view

800 mm

19

Orthographic projection

Perspective projection

Scaled orthographic projection

Also called "weak perspective". If a model uses orthographic projection, it's most likely weak perspective.

- Simply projection is a scaled value: $(X, Y, Z) \rightarrow(d x, d y)$
- This scale factor, d, approximates, f/z
- But it's like same z everywhere (bc one scale for everything)

Camera parameters

- How can we model the geometry of a camera?

Three important coordinate systems:

1. World coordinates
2. Camera coordinates
3. Image coordinates

How do we project a given world point (x, y, z) to an image point?

World to Camera Frame

Why do we need Projective Geometry?

Camera to Image Projection

- Parallel lines converge at a vanishing point
- Euclidean Geometry does not model this behavior
- Projective Geometry does!

Geometric Image Formation (coordinate frames)

