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3D Vision
BLG 634E 

Some figures are due book by Do Carmo: “Differential Geom of Curves and Surfaces” 
Some slides are from Scott Schaefer at TAMU, and Jean Gallier’s Slides from Upenn

Modified for our course.

Professor: Gozde UNAL

Differential Geometry of Curves
An Introduction
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Parameterized Curves

Do Carmo, “Differential Geom of Curves and Surfaces”
Figure 1-1.
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Do Carmo, “Differential Geom of Curves and Surfaces”
Figure 1-1.
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Parameterized Curves
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Intrinsic Properties of Curves
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Intrinsic Properties of Curves
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Intrinsic Properties of Curves
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Parameterized Curves

Do Carmo, “Differential Geom of Curves and Surfaces”
Figure 1-5.

qCircle

)sin,(cos)( ttt =a

)2sin,2(cos)( ttt =b
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Parameterized Curves

Do Carmo, “Differential Geom of Curves and Surfaces”
Figure 1-5.

qCircle

Velocity vector of the second curve is 
double of the first one

)sin,(cos)( ttt =a

)2sin,2(cos)( ttt =b
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Arc Length

qs(t)=t implies arc-length parameterization
qIndependent under parameterization!

s(t) = x '( p) dp
a

t

∫

Definition (Tangent vector):For a parameterized differentiable curve: 
x: I à R^3,
for each t in I, x’(t) is not equal to zero, there is a well defined straight 
line, which contains the point x(t) and the vector x’(t). 
This line is called the tangent line to the curve x at t.
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Frenet Frame (Local Theory of Regular Curves)

qUnit-length tangent
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Frenet Frame

qUnit-length tangent

qUnit-length normal
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Frenet Frame

qUnit-length tangent

qUnit-length normal

qBinormal
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Frenet Frame

qProvides an orthogonal frame anywhere on curve
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Frenet Frame

0)()()()()()( =×=×=× tNtTtNtBtTtB
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Trivial due to cross-product

qProvides an orthogonal frame anywhere on curve
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Frenet Frame
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qProvides an orthogonal frame anywhere on curve
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Frenet Frame
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Frenet Frame
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qProvides an orthogonal frame anywhere on curve
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Curvature
k(s)=|a’’|: measure of how rapidly the curve pulls away

from the tangent line

Do Carmo, “Differential Geom of Curves and Surfaces”
Figure 1-14.
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Curvature

qMeasure of how much the curve bends
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)(tx)(tT
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Curvature
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Curvature

qMeasure of how much the curve bends
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Curvature
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Curvature
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qMeasure of how much the curve bends

This last step requires derivation: start from definition of T(t), then 
continue with deriving to get T’(t) … (If interested, see me).
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Curvature
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qMeasure of how much the curve bends

Inverse of the curvature is called the 
radius of curvature at t.
E.g. a circle of radius r has radius of 
curvature = r.
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Curvature

qk(s) can be defined as SIGNED

Do Carmo, “Differential Geom of Curves and Surfaces”
Figure 1-16.
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Torsion

qMeasure of how much the curve twists or how quickly 
the curve leaves the osculating plane
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)(tN

Osculating Plane
qPlane defined by the point x(t) and the vectors T(t) and N(t)
qLocally the curve resides in this plane
q|B’(s)| measures the rate of change of the nbhring osculating

planes with the osculating plane at s
qHence how rapidly the curve pulls away from osc.plane: 

describes the TORSION of the curve

)(tB

)(tx)(tT

27

28
28/50

Torsion

qMeasure of how much the curve twists or how quickly 
the curve leaves the osculating plane

q In terms of the curve C and 
its derivatives, the torsion of C:

)(')( sBs =t

Do Carmo, “Differential Geom of Curves and Surfaces”
Figure 1-15.
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τ(t) = −
(C'×C' ')⋅ C' ' '
C'×C' ' 2
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Frenet Equations
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Frenet Frame

qPhysical Intuition:

We can think of a curve in R3 as being obtained from a 
straight line by

BENDING (CURVATURE) and

TWISTING (TORSION)
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Fundamental Theorem of the
Local Theory of Curves

Given differentiable functions k(s)>0 and t(s),  s Î I, 
there exists a regular parameterized curve C: I à R3

such that s is the arc length, k(s) is the curvature, and
t(s) is the torsion of C.

Moreover, any other curve satisfying the same
conditions, differs from C by a rigid motion.

Manfredo P. Do Carmo, “Differential Geometry of Curves
and Surfaces”, Prentice Hall, 1976.
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Uses of Frenet Frames

q Animation of a camera

Figure from the book: “Computer animation: 
algorithms and techniques”, Rick Parent, 2002

q Skinning a surface along a path

q E.g. Geometric Properties of the 3D Spine Curve
Sotoca J.M., Buendía M., Iñesta J.M., Ferri F.J. (2003) 
Pattern Recognition and Image Analysis. IbPRIA 2003. 
Lecture Notes in Computer Science, vol 2652. 
Springer
E.g. a thoracic scoliosis patient
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Uses of Frenet Frames

qProblems: The Frenet frame becomes unstable or 
even undefined at inflection points when 
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Global Properties of Plane Curves

Question: Of all simple closed curves in the plane
with a given length L, which one bounds the
largest area?

qISOPERIMETRIC INEQUALITY answers this
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Global Properties of Plane Curves

Question: Of all simple closed curves in the plane 
with a given length L, which one bounds the 
largest area?

Theorem: (ISOPERIMETRIC INEQUALITY) 
Let C be a simple closed plane curve with length L, 

and let A be the area of the region bounded by C. 
Then

L2 – 4pA >= 0

and equality holds if and only if C is a circle.
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Global Properties of Plane Curves

JORDAN CURVE THEOREM: Let C be a simple 
closed curve (i.e. a Jordan curve) in the plane R2. 
Then the complement of the image of C consists 
of two distinct connected components. One of 
these components is bounded (the interior) and 
the other is unbounded (the exterior). The image 
of C is the boundary of each component. 

The statement of the Jordan curve theorem seems 
obvious, but it was a very difficult theorem to prove
for general curves!

C
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