Professor: Gozde UNAL

Differential Geometry of Curves An Introduction

Some figures are due book by Do Carmo: "Differential Geom of Curves and Surfaces" Some slides are from Scott Schaefer at TAMU, and Jean Gallier's Slides from Upenn Modified for our course.

1

1

Parameterized Curves

Do Carmo, "Differential Geom of Curves and Surfaces" Figure 1-1.

Parameterized Curves

Helix:

$$
\alpha(t)=(a \cos t, a \sin t, b t)
$$

Do Carmo, "Differential Geom of Curves and Surfaces" Figure 1-1.

Intrinsic Properties of Curves

$$
\begin{aligned}
& x(t)=(\cos (t), \sin (t)) \\
& w(t)=\left(\frac{1-t^{2}}{1+t^{2}}, \frac{2 t^{2}}{1+t^{2}}\right)
\end{aligned}
$$

Intrinsic Properties of Curves

$$
\begin{gathered}
x(t)=(\cos (t), \sin (t)) \\
w(t)=\left(\frac{1-t^{2}}{1+t^{2}}, \frac{2 t^{2}}{1+t^{2}}\right) \\
x(0)=w(0)=(1,0)
\end{gathered}
$$

5

Intrinsic Properties of Curves

$$
\begin{gathered}
x(t)=(\cos (t), \sin (t)) \\
w(t)=\left(\frac{1-t^{2}}{1+t^{2}}, \frac{2 t^{2}}{1+t^{2}}\right) \\
x(0)=w(0)=(1,0) \\
x^{\prime}(0)=(0,1) \neq(0,2)=w^{\prime}(0)
\end{gathered}
$$

different derivatives!

Parameterized Curves

\square Circle

$$
\begin{aligned}
& \alpha(t)=(\cos t, \sin t) \\
& \beta(t)=(\cos 2 t, \sin 2 t)
\end{aligned}
$$

Do Carmo, "Differential Geom of Curves and Surfaces" Figure 1-5.

7

Parameterized Curves

-Circle

$$
\begin{aligned}
& \alpha(t)=(\cos t, \sin t) \\
& \beta(t)=(\cos 2 t, \sin 2 t)
\end{aligned}
$$

Velocity vector of the second curve is double of the first one

Arc Length

$$
s(t)=\int^{t}\left\|x^{\prime}(p)\right\| d p
$$

a
$\square \mathrm{s}(\mathrm{t})=\mathrm{t}$ implies arc-length parameterization
\square Independent under parameterization!

Definition (Tangent vector):For a parameterized differentiable curve: $\mathrm{x}: \mathrm{I} \rightarrow \mathrm{R}^{\wedge} 3$,
for each t in $I, x^{\prime}(t)$ is not equal to zero, there is a well defined straight line, which contains the point $x(t)$ and the vector $x^{\prime}(t)$.
This line is called the tangent line to the curve x at t.

9

Frenet Frame (Local Theory of Regular Curves)

-Unit-length tangent

$$
T(t)=\frac{x^{\prime}(t)}{\left\|x^{\prime}(t)\right\|}
$$

Frenet Frame

\square Unit-length tangent
UUnit-length normal $\quad T(t)=\frac{x^{\prime}(t)}{\left\|x^{\prime}(t)\right\|}$

$$
N(t)=\frac{T^{\prime}(t)}{\left\|T^{\prime}(t)\right\|}
$$

Frenet Frame

-Unit-length tangent
-Unit-length normal

$$
T(t)=\frac{x^{\prime}(t)}{\left\|x^{\prime}(t)\right\|}
$$

-Binormal

$$
N(t)=\frac{T^{\prime}(t)}{\left\|T^{\prime}(t)\right\|}
$$

$$
B(t)=T(t) \times N(t)
$$

Frenet Frame

$$
T(t)=\frac{x^{\prime}(t)}{\left\|x^{\prime}(t)\right\|} \quad N(t)=\frac{T^{\prime}(t)}{\left\|T^{\prime}(t)\right\|} \quad B(t)=T(t) \times N(t)
$$

\square Provides an orthogonal frame anywhere on curve

$$
B(t) \cdot T(t)=B(t) \cdot N(t)=T(t) \cdot N(t)=0
$$

Frenet Frame

$T(t)=\frac{x^{\prime}(t)}{\left\|x^{\prime}(t)\right\|} \quad N(t)=\frac{T^{\prime}(t)}{\left\|T^{\prime}(t)\right\|} \quad B(t)=T(t) \times N(t)$
\square Provides an orthogonal frame anywhere on curve

$$
B(t) \cdot T(t)=B(t) \cdot N(t)=T(t) \cdot N(t)=0
$$

Trivial due to cross-product

Frenet Frame

$$
T(t)=\frac{x^{\prime}(t)}{\left\|x^{\prime}(t)\right\|} \quad N(t)=\frac{T^{\prime}(t)}{\left\|T^{\prime}(t)\right\|} \quad B(t)=T(t) \times N(t)
$$

\square Provides an orthogonal frame anywhere on curve

$$
\begin{gathered}
B(t) \cdot T(t)=B(t) \cdot N(t)=T(t) \cdot N(t)=0 \\
T(t) \cdot T(t)=1
\end{gathered}
$$

Frenet Frame

$T(t)=\frac{x^{\prime}(t)}{\left\|x^{\prime}(t)\right\|} \quad N(t)=\frac{T^{\prime}(t)}{\left\|T^{\prime}(t)\right\|} \quad B(t)=T(t) \times N(t)$
\square Provides an orthogonal frame anywhere on curve

$$
\begin{gathered}
B(t) \cdot T(t)=B(t) \cdot N(t)=T(t) \cdot N(t)=0 \\
T(t) \cdot T(t)=1 \\
T^{\prime}(t) \cdot T(t)+T(t) \cdot T^{\prime}(t)=0
\end{gathered}
$$

Frenet Frame

$$
T(t)=\frac{x^{\prime}(t)}{\left\|x^{\prime}(t)\right\|} \quad N(t)=\frac{T^{\prime}(t)}{\left\|T^{\prime}(t)\right\|} \quad B(t)=T(t) \times N(t)
$$

\square Provides an orthogonal frame anywhere on curve

$$
\begin{gathered}
B(t) \cdot T(t)=B(t) \cdot N(t)=T(t) \cdot N(t)=0 \\
T(t) \cdot T(t)=1 \\
T^{\prime}(t) \cdot T(t)+T(t) \cdot T^{\prime}(t)=0 \\
T(t) \cdot N(t)=0
\end{gathered}
$$

17

Curvature

$\mathrm{k}(\mathrm{s})=\left|\alpha^{\prime \prime}\right|$: measure of how rapidly the curve pulls away from the tangent line

Do Carmo, "Differential Geom of Curves and Surfaces" Figure 1-14.

19

Curvature

\square Measure of how much the curve bends

$$
\kappa=\left\|\frac{\partial T}{\partial s}\right\|
$$

20/50

21

Curvature

\square Measure of how much the curve bends

$$
\kappa(t)=\frac{\left\|T^{\prime}(t)\right\|}{\left\|x^{\prime}(t)\right\|}
$$

22/50

Curvature

\square Measure of how much the curve bends

$$
\kappa(t)=\frac{\left\|T^{\prime}(t)\right\|}{\left\|x^{\prime}(t)\right\|}=\frac{\left\|x^{\prime}(t) \times x^{\prime \prime}(t)\right\|}{\left\|x^{\prime}(t)\right\|^{3}}
$$

This last step requires derivation: start from definition of $T(t)$, then continue with deriving to get $\mathrm{T}^{\prime}(\mathrm{t}) \ldots$ (If interested, see me).

Curvature

-Measure of how much the curve bends

$$
\kappa(t)=\frac{\left\|T^{\prime}(t)\right\|}{\left\|x^{\prime}(t)\right\|}=\frac{\left\|x^{\prime}(t) \times x^{\prime \prime}(t)\right\|}{\left\|x^{\prime}(t)\right\|^{3}}
$$

Inverse of the curvature is called the radius of curvature at t .
E.g. a circle of radius r has radius of curvature $=r$.

Curvature

$\square \mathrm{l}(\mathrm{s})$ can be defined as SIGNED

Do Carmo, "Differential Geom of Curves and Surfaces" Figure 1-16.

Torsion

\square Measure of how much the curve twists or how quickly the curve leaves the osculating plane

Osculating Plane

\square Plane defined by the point $x(t)$ and the vectors $T(t)$ and $N(t)$ LLocally the curve resides in this plane $]^{\prime}\left|\mathrm{B}^{\prime}(\mathrm{s})\right|$ measures the rate of change of the nbhring osculating planes with the osculating plane at s
-Hence how rapidly the curve pulls away from osc. plane: describes the TORSION of the curve

27

Torsion

\square Measure of how much the curve twists or how quickly the curve leaves the osculating plane

$$
\tau(s)=\left\|B^{\prime}(s)\right\|
$$

\square In terms of the curve C and its derivatives, the torsion of C :

$$
\tau(t)=-\frac{\left(C^{\prime} \times C^{\prime \prime}\right) \cdot C^{\prime \prime \prime}}{\left|C^{\prime} \times C^{\prime \prime}\right|^{2}}
$$

Do Carmo, "Differential Geom of Curves and Surfaces"

Frenet Equations

- $T^{\prime}(s)=\kappa(s) N(s)$
${ }^{-} N^{\prime}(s)=\tau(s) B(s)-\kappa(s) T(s)$
$B^{\prime}(s)=-\tau(s) N(s)$

Frenet Frame

\square Physical Intuition:

We can think of a curve in R^{3} as being obtained from a straight line by

BENDING (CURVATURE) and

TWISTING (TORSION)

Fundamental Theorem of the Local Theory of Curves

Given differentiable functions $k(s)>0$ and $\tau(s), \quad s \in I$, there exists a regular parameterized curve $C: I \rightarrow R^{3}$ such that s is the arc length, $k(s)$ is the curvature, and $\tau(s)$ is the torsion of C.

Moreover, any other curve satisfying the same conditions, differs from C by a rigid motion.

Manfredo P. Do Carmo, "Differential Geometry of Curves and Surfaces", Prentice Hall, 1976.

Uses of Frenet Frames

Animation of a camera
E.g. Geometric Properties of the 3D Spine Curve Springer
E.g. a thoracic scoliosis patient

Fig. 3. (Left) A representation of the Frenet frame of a normal spine curve. (Right) Frame evolution for a pathologic spine. In the top-right square, a view from the top is displayed.

Uses of Frenet Frames

DProblems: The Frenet frame becomes unstable or even undefined at inflection points when

$$
\begin{gathered}
T^{\prime}(t)=0 \\
T(t)=\frac{x^{\prime}(t)}{\left\|x^{\prime}(t)\right\|} \quad N(t)=\frac{T^{\prime}(t)}{\left\|T^{\prime}(t)\right\|} \quad B(t)=T(t) \times N(t)
\end{gathered}
$$

Global Properties of Plane Curves

Question: Of all simple closed curves in the plane with a given length L, which one bounds the largest area?
ロISOPERIMETRIC INEQUALITY answers this

Global Properties of Plane Curves

Question: Of all simple closed curves in the plane with a given length L, which one bounds the largest area?

Theorem: (ISOPERIMETRIC INEQUALITY)

Let C be a simple closed plane curve with length L, and let A be the area of the region bounded by C. Then

$$
L^{2}-4 \pi A>=0
$$

and equality holds if and only if C is a circle.

Global Properties of Plane Curves

JORDAN CURVE THEOREM: Let C be a simple closed curve (i.e. a Jordan curve) in the plane R^{2} Then the complement of the image of C consists of two distinct connected components. One of these components is bounded (the interior) and
 the other is unbounded (the exterior). The image of C is the boundary of each component.

The statement of the Jordan curve theorem seems obvious, but it was a very difficult theorem to prove for general curves!

