BLG634E 3D Vision
Lecture on
Homography and RANSAC

Instructor:. Gozde Unal

IMAGE FORMATION - Perspective Imaging

Figure 3.1. Frescoes from the first century B.C. in Pompeii. Partially correct perspective
projection is visible in the paintings, although not all parallel lines converge to the vanish-
ing point. The skill was lost during the middle ages, and it did not reappear in paintings
until the Renaissance (image courtesy of C. Tavlor).

Ma, Soatto et al, Chapter 3
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IMAGE FORMATION - Perspective Imaging
“The Scholar of Athens,” Raphael, 1518

Image courtesy of C. Taylor

By the end of Renaissance, artists have perfected the techniques on
how to paint with correct perspective projection. This is shown
vividly and overwhelmingly in paintings from this era.
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Projective Plane

U Points and lines may be obtained by
intersecting the set of rays and planes
by the plane x3 =1

U Lines lying in the x;-x, plane represent
ideal points, and the x;-x; plane
represents ...

ODuality Principle: To any theorem of P? projective
geometry, there corresponds a dual theorem, with roles of
points and lines exchanged

Ue.g. A point on a line or line through a point: I"x = xTl =0

Ue.g. Intersection of two lines, or points: x = | x I'or |= x x X’
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Projective Transformation

O1In aview of geometry (F. Klein): geometry is the study of
properties invariant under groups of transformations

OFrom this view: 2D projective geometry: study of
properties of the projective plane P2 under a group of
transformations called Projectivity.

ODef: Projectivity: An

invertible mapping from points in P2

to points in P2 that maps lines to lines

QProjectivities form a group

Central Projection

O Fig 1.3 Projection of rays
through a common point
(center of projection) defines
a mapping from one plane to
another

0 Central projection maps points
on one plane to points on
another plane.

1 It also maps lines to lines
(consider a plane through the
projection center which
intersects the two planes pi
and pi’)

0 Therefore, central projectior
is a projectivity and
represented by a linear
mapping of homogeneous
coordinates

e x' = Hx
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Figure 3.10. Perspective image of a line L in 3-D. The collection of images of points o

the line forms a plane P. Intersection of this plane and the image plane gives a straight lin
£ which is the image of the line.

7

I ayc v




The Projective Geometry of 1D (Extra Material)

O The Cross Ratio: Basic projective invariant of P!
O Def: Given 4 points x; (homogeneous coord):

. = = |5{13_‘2||5‘3R4i Tl T4
Cross(Xy, X, Xz, X4) = ————— |%:%;| = det | :
i X 2, 20 |x1%3|[%2%4 G Tir 2

if X' = HoyaX then Cross(x|, x5, %4, %)) = Cross(%,, X2, X3, %4)
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Fig. 1.8. Projective transformations between lines. There are four sets of four

collinear points in this figure. Fach set is related to the others by a line-to-line projectivity.
Since the cross ratio is an invariant under a projectivity, the cross ratio has the same value
for all the sets shown.
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Projective Transformation

U Examples of Projective transformation
0 x' = Hx
U Projective transform between two images
® induced by a world plane
® with the same camera center (camera rotating about its center)

: 5
\lmag: Lz . lmAgc s
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\/ planar surface

Fig 1.5. Hartley,Zisserman

1

11

I ayc =



Removing Perspective Distortion

0 Shape is distorted under perspective imaging (windows not
rectangular on the left)

12 Fig 1.4. Hartley,Zisserman
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Projective Transformation

O Distortions arising under central projection

Q a. Similarity: circle, square imaged as circle, square. Angles are
preserved

O b. Affine: circle > ellipse, parallel lines still parallel

Q c. Projective: Parallel lines > converging lines. Tiles closer to the
camera have a larger image than those farther away.

Fig 1.6. Hartley,Zisserman
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Projective Transformation

O Decomposition of a projective transformation

skt K 0 L, 0 4 £

1 L | 0l -1 vi vl Tl w (1.16)

H=HgH,Hp =

with A a non-singular matrix given by A = sRK + tv', and K an upper-triangular
matrix normalized as det K = 1. This decomposition is valid provided v £ 0, and i
unicue if s is chosen positive.

QOEach of the above matrices has the "essence” of a

transformation of that type (e.g. Similarity, affine and
projective)
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2D Transformation Groups and Invariants

Group Matrix Distortion Invariant properties

Concurrency, collinearity, order of
: contact: intersection (1 pt contact);
sl hin hiz Mg (e <

Projective h Y 7 (| tangency (2 pt contact); inflections

8 dof A ] (3 pt contact with line); tangent dis

continuities and cusps. cross ratio

(ratio of ratio of lengths).

har hae ha

Parallelism, ratio of areas, ratio of

Al apn ayg  ty 1 ] lengths on collinear or parallel lines
( llm[( ay  az ty (e.g. midpoints), lincar combinations
Ko 0 0 1 of vectors (e.g. centroids)
T'he line at infinity, 1.

e T S S
Similarity | ST ! angle. The circular
1 dof b ' section 1.7.3).
Euclides ™ Tzt ) / Y
.;'l]“l: oo Tor Toa 1y ¢ Length, area
i OO

Table 1.1. Geometric properties invariant to commonly occurring planar trans-
formations. The matriz A = [a;;] is an invertible 2 X 2 matriz, R = [ry;] is a 2D rotation
matriz, and (tg,ty) a 2D translation. The distortion column shows typical effects of the
transformations on a square. Transformations higher in the table can produce all the ac-
tions of the ones below. These range from Euclidean, where only translations and rotations
oceur, to projective where the square can be transformed to any arbitrary quadrilateral (pro-
vided no three points are collinear).

15 from [Hartley,Zisserman] book

15

I ayc v



The Projective Geometry of 3D

[Iransformation Matrix # DoF Preserves Icon
Projectivi S | @
lof v
ranslation [ I ‘ t ] 3 orientation D
3x4 LA
figid (Buctidean) | R[¢] 6  lengths O e [44] ﬂ
imilarity [ sR |t ] 7 angles O R0 il
3x4
Similarity Rt
hffine [ A ]3 . 12 parallelism D s ’“ l ’ ﬂ
X
projective [ H ] 15 straight lines Ij : :
xt s ] g

Table 2.2 Hierarchy of 3D coordinate transformations. Each transformation also preserve:

the properties listed in the rows below it, i.e., similarity preserves not only angles but alsc

parallelism and straight lines. The 3 x 4 matrices are extended with a fourth [0 1] row tc
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Homography

pP=XYZ1)

(b)

Figure 2.12 A point is projected into two images: (a) relationship between the 3D point co-
ordinate (X,Y, Z, 1) and the 2D projected point (z, y, 1, d); (b) planar homography induced
by points all lying on a common plane 7 - p + co = 0.
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Homography Estimation

Figure 5.13. Homography between the left and middle images is determined by the building
facade on the top, and the ground plane on the bottom. The right image is the warped image
overlayed on the first image based on estimated homography H. Note that all points on the
reference plane are perfectly aligned, whereas points outside the reference plane are offset
by an amount that is proportional to their distance from the reference plane.
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Fig. 8.9. Planar panoramic mosaicing. Eight images (out of thirty) acquired by rotating a camcorder
about its centre. The thirty images are registered (automatically) using planar homographies and com-
posed into the single panoramic mosaic shown. Note the characteristic “bow tie” shape resulting from
registering to an image at the middle of the sequence.
19 from [Hartley,Zisserman] book
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Homography Estimation: Direct Linear Transform

Simple linear algorithm to estimate H  1x; -

thxi
Then Hx; = h2:x,-
hH X;
2 x He, = 0 ’
. yih3Tx; — wih?® Tx;
with i x} x Hx; = wEh'Tx,- - :cih"”x.;

fiies: 5 ipere At | L o
x; = (=}, ¥}, w}) R T LT

0 —wix;T YT ]/ R
- whx;! o' zhx; h? | =0. (3.1)
—Yix; zix; ' 0' -h?

h! hy hy hg
h=| h* |, H=| hg hs hg (3.2)
h? hy hg hy

These equations have the form A;h = 0, where A; is a 3 x 9 matrix

20 (Chapter 3, [HZbook])
20
Homography Estimation: The Basic DLT
3.1 The Dirvect Lincar Transformation (DLT) algorithm 73
Bbihove e ST
Given » = 4 2D to 2D point correspondences {x; «» x4}, determine the 2D homography
matrix H such that x; = Hx;.
Algorithm
(i) For each correspondence x; « x; compute the matrix A; from (3.1). Only the
first two rows need be used in general.
(i) Assemble the n 2 x 9 matrices A; into a single 2n x 9 matrix A.
(iii) Obtain the SVD of A (section A3.3(p556)). The unit singular vector correspond-
ing to the smallest singular value is the solution h. Specifically, if A = UDV" with
D diagonal with positive diagonal entries, arranged in descending order down the
diagonal, then h is the last column of V.
| (iv) The matrix H is determined from h as in (3.2).
Algorithm 3.1. The basic DLT for H (bul see algorithm 3.2(p92) which includes normaliza-
tion).
21
21
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Homography Estimation: The Basic DLT
QOIf more than 4 point correspondences are given
® Over-determined system

QIf the positions of points are exact, rank of A still 8 then
we still have 1-dim null space for h

OTIf measurements of image coord are not exact ("noise")
there will not be an exact solution to the overdetermined
system Ah=0 other than h=0

0 Then search for an approx soln (instead of Ah=0)
® Minimize a cost function with a constraint on h

min ||Ah|| s.t.|]h]]=1
® The constraint avoids h=0

° Tre solution is the (unit) eigenvector of ATA with least eigen
value

22
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DLT: Direct Linear Transform revisited

Q DLT not invariant to image coordinate transformation: e.g. a
similarity transformation

QO lLet Tand T be two similarity transformations: i Tx;
X; = T'x!

O Substitute in x' = Hx %' = T'HT~ '3

Q This changes the minimization of the algebraic error
|[Ah|| = s||Ah]

with the norm constraint ||h||=1 now becomes ||h*||=1 (Recall h is the
vector entries of homography Hgs,; elements)

Q Solution: Normalize the data before applying the DLT to handle the
arbitrary origin and scale of image coordinates > Algo 3.2

23
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Normalized DLT for 2D homographies

Objective

el - EA B aT . -
('m‘].' n = 42D to 313 point correspondences {x; + xt}, determine the 2D homography
matrix H such that x! = Hx;,

Algorithin

(i} Normalization of x: Compute a similarity transformation T, consisting of a
translation and sealing, that takes points x; to a new sei of points %; such that
the centroid of the points X; is the coordinate origin (0,0)7, and their Averapge
distance from the origin is /2.

(ii) Normalization of x': Compute a similar transformation T for the points in
the second image, transforming points x; to ¥,

(iii) DLT: Apply algorithm 3.1(p73) to the correspondences %; « x; to obtain a
homography H.
(iv) Denormalization: Set H = T' 'HT.

Algoritlun 3.2, The normalized DLT for 2D homographies.

Note: Data normalization is an essential step of DLT!

24
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Robust Estimation of the Homography

QUntil now, we inherently assumed that point
correspondences x; €-> x’; had only source of error in
the measurements of point position (with a Gaussian
distribution)

UMismatched points

® - outliers to Gaussian error distribution
® Will severely affect the estimated homography
® Should be identified
Q6oal: determine a set of inliers from the presented

correspondences so that the homography can be
estimated in an optimal manner

O-> This is robust estimation! Robust (tolerant) to
outliers (measurements following a possibly
unmodelled error distribution)

25
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Robust Estimation

0 Robust Line Estimation: Regression problem Fig 3.7. [Hzbook]

o

QOInliers: Solid points, Outliers: Open points

0 RANSAC Idea: Select two points randomly-> they define a line.

U Measure the support by no. of points that lie within a distance
threshold

U Repeat this random selection a number of times

O The line with the most support is the robust fit.

Q Inliers: points within the threshold distance (consensus set)
O If a point is an outlier, that line will not gain much support!

26
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Matching features

ldl

ATl |
L]

What do we do about the “bad” matches?

33
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RAndom SAmple Consensus

Select one match, count inliers

34

34
RAndom SAmple Consensus
35
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Least squares fit

il LRl |

HRER mnb
TR

Find “average” translation vector

36
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RANSAC for estimating homography

0 RANSAC loop:

1. Select four feature pairs (at random)
2. Compute homography H (exact)

3. Compute inliers where SSD(p;’, Hp)<e
4,

Keep largest set of inliers (in case of ties, choose
the solution with lowest std dev of inliers)

5. Re-estimate H on all of the inliers

37
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RANSAC

o] e

L=
i -

39

RANSAC: RAndom SAmple Consensus

U Generally: we want to fit a model to the data (e.g. a line in the
previous ex, or a homography to point correspondences)

0 Random sample consists of a minimal subset of the data sufficient to
determine the model (e.g. two points for a line)

0 If the model is a planar homography, and the data a set of 2D point
correspondences, then the minimal subset contains 4
correspondences.

0 As Fischler and Bolles put it [Fischler-81]

"The RANSAC procedure is opposite to that of conventional smoothing
technigues: Rather than using as much of the data as possible to obtain an
initial solution and then attempting to eliminate the invalid points,
RANSAC uses as small an initial dataset as feasible and enlarges this set
with consistent data when possible”

0 > Use RANSAC in homography estimation

40

40
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Robust Estimation: General RANSAC Algo

Objective
Robust fit of a model to a data set § which contains outliers.
Algorithm

(i) Randomly select a sample of s data points from S and instantiate the model
from this subset.

(ii) Determine the set of data points 5; which are within a distance threshold ¢ of
the model. The set S; is the consensus set of the sample and defines the inliers
of 5.

(ili) If the size of 5; (the number of inliers) is greater than some threshold T,
re-estimate the model using all the points in S; and terminate.

(iv) If the size of S5 is less than T, select a new subset and repeat the above.

(v) After N trials the largest consensus set S; is selected, and the model is
re-estimated using all the points in the subset S;.

Algorithm 3.4. The RANSAC robust estimation algorithm, adapted from [Fischler-81]. A
mintmum of s data points are required to instantiale the free parameters of the model. The
three algorithm thresholds t, T', and N are discussed in the text.

4

41

RANSAC Parameters

0 1. Distance threshold t? in practice, chosen empirically

Table 3.2 [HZbook] probabilistic t+ values: 12 = cc, where Normal(0, ) measurement
error
0 2. How many sample sets? N samples: number of samples sufficiently
high fo ensure with a probability p (usually p=0.99) that at least 1
sample set is free from outliers
® w: prob that a point is an inlier > ¢= 1-w prob of outlier
® At least N selections (each has s points) are required: (1-w*)N = 1-p

N =log(1 — p)/log(1 — (1 — €)®). (3.18)

e N = 00, sample_count= 0.
e While N > sample_count Repeat
~ Choose a sample and count the number of inliers.
— Set € = 1 — (number of inliers)/(total number of points)
— Set N from € and (3.18) with p = 0.99.
— Increment the sample_count by 1.

e Terminate.

Algorithm 3.5. Adaptive algorithm for determining the number of RANSAC samples.

2 (Chanter 4 [HZ7haook1)

42
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RANSAC Parameters

03. How large is an acceptable consensus set?
Rule of thumb: terminate if

size of consensus set ~ estimated number of inliers
believed to be in the data

Ex:
&: prob of outliers =0.2 (20%)
For a total of n data points:
T=(1-¢)n=0.8* n: estimated no of inliers in the dataset

T would be a good estimate for an acceptable number of
data points expected in the consensus set

43
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Automatic Computation of a Homography

Objective

Compute the 2D homography between two images.
Algorithm

(i) Interest points: Compute interest points in cach image.
(ii) Putative correspondences: Compute a set of interest point matches based
on proximity and similarity of their intensity neighbourhood.
(iii) RANSAC robust estimation: Repeat for N samples, where N is determined
adaptively as in algorithm 3.5:
(a) Select a random sample of 4 correspondences and compute the homogra-
phy H.
(b) Caleulate the distance d, for each putative correspondence.
(c) Compute the number of inliers consistent with H by the number of cor-
respondences for which d; <t = +/5.99¢ pixels.

Choose the H with the largest number of inliers. In the case of ties choose the
solution that has the lowest standard deviation of inliers.

(iv) Optimal estimation: re-estimate H from all correspondences classified as
inliers, by minimizing the ML cost function (3.8-p78) using the Levenberg-
Marquardt algorithm of section A4.2(p569).

(v) Guided matching: Further interest point correspondences are now determined
using the estimated H to define a search region about the transferred point
position.

The last two steps can be iterated until the number of correspondences is stable,

Algorithin 3.6. Automatic estimation of a homography between two images using RANSAC.
hant

44
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Computation of Homography

via RANSAC

O Motion (rotation about the camera
center) between views

Q Corners detected in both

O Left Figure: All putative point
correspondences

Right Figure: Outliers

Q Left: Inliers

Q Right: Final set of inliers after
iterations in RANSAC

Fig 3.9 [HZbook]

45
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Error functions in estimating H

ODLT algo minimizes the norm ||Ah||. The vector ¢=||Ah||
is called the residual vector.

QOEach correspondence x; €-> x'; contributes to a partial
error vector g toward the full error: called the algebraic
error vector

0O The norm of this distance is the algebraic distance:

) Tl S T oo 2
Ayt (X}, Hx;)? = ||ei]|2 = ! [ wfler l‘o;;‘a _'JT’/‘XT }h (3.4)
QError for the complete set:
> dygg(xh i) = ) lel|* = [|ah|[* = ||e]|*. (3.5)

46
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Error functions in estimating H (geometric error)

x.\;/ﬁ\ d x/

d e—e

|| T

H!

image 1 image 2

Fig 3.2: Symmetric transfer error (geometric error) minimizes

Xr[{‘x,;‘H byi)? d(x}, Hx;)?. (3.7)

U image measurement errors occur in both images

x and x' are measured image coordinates (noisy points)
Q 1st (2nd) term: transfer error in the 1st(2nd) image
0 d : Euclidean image distance

47
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Iterative Minimization Methods

Minimize the geometric errors like the symmetric error
through iterative minimizations such as

Newton's method
Levenberg-Marquardt method
Setting up the iterative minimization:

URecall symmetric cost function:

i 3 R b
min 3 d(xi, B %) + d(x], Hx;)?

ODefine a function [ :hws (H '), ..., Hlx!, Hx,,. .., Hx,)

QO An initial estimate for h can be found from e.g.Algo 3.2

49

49
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Assignments

OReading: Hartley-Zisserman book Chap 3
(Homography estimation)

UNext time: Zhang's paper, A flexible New technique
for Camera Calibration

Study the paper/technical report by Zhang on his
Camera Calibration technique, on the board

UCamera Calibration Implementation: Check Bouget's
Website, his camera calibration links, etc
http://www.vision.caltech.edu/bouguetj/

® Gather components of the code
® Build the grid
® Experiment and Test it!

50
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