

Robust Estimation: General RANSAC Algo

Objective

Robust fit of a model to a data set S which contains outliers.

Algorithm

- (i) Randomly select a sample of s data points from S and instantiate the model from this subset.
- (ii) Determine the set of data points S_i which are within a distance threshold t of the model. The set S_i is the consensus set of the sample and defines the inliers of S.
- (iii) If the size of S_i (the number of inliers) is greater than some threshold T, re-estimate the model using all the points in S_i and terminate.
- (iv) If the size of S_i is less than T, select a new subset and repeat the above.
- (v) After N trials the largest consensus set S_i is selected, and the model is re-estimated using all the points in the subset S_i .

Algorithm 3.4. The RANSAC robust estimation algorithm, adapted from [Fischler-81]. A minimum of s data points are required to instantiate the free parameters of the model. The three algorithm thresholds t, T, and N are discussed in the text.

Iterative Minimization Methods Minimize the geometric errors like the symmetric error through iterative minimizations such as Newton's method Levenberg-Marguardt method Setting up the iterative minimization: Recall symmetric cost function: min $\sum_i d(\mathbf{x}_i, \mathbf{H}^{-1}\mathbf{x}_i')^2 + d(\mathbf{x}_i', \mathbf{H}\mathbf{x}_i)^2$ $f: \mathbf{h} \mapsto (\mathbf{H}^{-1}\mathbf{x}'_1, \dots, \mathbf{H}^{-1}\mathbf{x}'_n, \mathbf{H}\mathbf{x}_1, \dots, \mathbf{H}\mathbf{x}_n)$ Define a function An initial estimate for h can be found from e.g.Algo 3.2 49 49

