BLG634E 3D Vision Lecture on Homography and RANSAC

Instructor:. Gözde Ünal

1

Figure 3.1. Frescoes from the first century B.C. in Pompeii. Partially correct perspective projection is visible in the paintings, although not all parallel lines converge to the vanishing point. The skill was lost during the middle ages, and it did not reappear in paintings until the Renaissance (image courtesy of C. Taylor).

IMAGE FORMATION - Perspective Imaging

"The Scholar of Athens," Raphael, 1518

Image courtesy of C. Taylor
By the end of Renaissance, artists have perfected the techniques on how to paint with correct perspective projection. This is shown vividly and overwhelmingly in paintings from this era.

3

Projective Plane

\square Points and lines may be obtained by intersecting the set of rays and planes by the plane $x_{3}=1$
\square Lines lying in the $x_{1}-x_{2}$ plane represent ideal points, and the $x_{1}-x_{2}$ plane represents I_{∞}.

\square Duality Principle: To any theorem of P^{2} projective geometry, there corresponds a dual theorem, with roles of points and lines exchanged
De.g. A point on a line or line through a point: $\left.\right|^{\top} x=x^{\top} \mid=0$
De.g. Intersection of two lines, or points: $x=|x|^{\prime}$ or $\mid=x \times x^{\prime}$

Projective Transformation

\square In a view of geometry (F. Klein): geometry is the study of properties invariant under groups of transformations
\square From this view: 2D projective geometry: study of properties of the projective plane P^{2} under a group of transformations called Projectivity.
\square Def: Projectivity: An invertible mapping from points in P^{2} to points in P^{2} that maps lines to lines
\square Projectivities form a group

6

Central Projection

Fig 1.3 Projection of rays through a common point (center of projection) defines a mapping from one plane to another
Central projection maps points on one plane to points on another plane.
It also maps lines to lines (consider a plane through the projection center which intersects the two planes pi and pi')
Therefore, central projectior is a projectivity and represented by a linear mapping of homogeneous
 coordinates

$$
\bullet x^{\prime}=H x
$$

Figure 3.10. Perspective image of a line L in 3-D. The collection of images of points or the line forms a plane P. Intersection of this plane and the image plane gives a straight lin ℓ which is the image of the line.

The Projective Geometry of 1D (Extra Material)

\square The Cross Ratio: Basic projective invariant of P^{1} \square Def: Given 4 points x_{i} (homogeneous coord):

$$
\operatorname{Cross}\left(\overline{\mathbf{x}}_{1}, \overline{\mathbf{x}}_{2}, \overline{\mathbf{x}}_{3}, \overline{\mathbf{x}}_{4}\right)=\frac{\left|\overline{\mathbf{x}}_{1} \overline{\mathbf{x}}_{2}\right|\left|\overline{\mathbf{x}}_{3} \overline{\mathbf{x}}_{4}\right|}{\left|\overline{\mathbf{x}}_{1} \overline{\mathbf{x}}_{3}\right|\left|\overline{\mathbf{x}}_{2} \overline{\mathbf{x}}_{4}\right|} \quad\left|\overline{\mathbf{x}}_{i} \overline{\mathrm{x}}_{j}\right|=\operatorname{det}\left[\begin{array}{cc}
x_{i 1} & x_{j 1} \\
x_{i 2} & x_{j 2}
\end{array}\right]
$$

if $\overline{\mathrm{x}}^{\prime}=\mathrm{H}_{2 \times 2} \overline{\mathrm{x}}$ then $\operatorname{Cross}\left(\overline{\mathrm{x}}_{1}^{\prime}, \overline{\mathbf{x}}_{2}^{\prime}, \overline{\mathrm{x}}_{3}^{\prime}, \overline{\mathrm{x}}_{4}^{\prime}\right)=\operatorname{Cross}\left(\overline{\mathrm{x}}_{1}, \overline{\mathrm{x}}_{2}, \overline{\mathrm{x}}_{3}, \overline{\mathrm{x}}_{4}\right)$

Fig. 1.8. Projective transformations between lines. There are four sets of four collinear points in this figure. Each set is related to the others by a line-to-line projectivity. Since the cross ratio is an invariant under a projectivity, the cross ratio has the same value for all the sets shown.

9

Projective Transformation

Examples of Projective transformation

- $x^{\prime}=H x$
\square Projective transform between two images
- induced by a world plane
- with the same camera center (camera rotating about its center)

Fig 1.5. Hartley,Zisserman

12

Projective Transformation

\square Distortions arising under central projectiona. Similarity: circle, square imaged as circle, square. Angles are preserved
b. Affine: circle \rightarrow ellipse, parallel lines still parallel
\square c. Projective: Parallel lines \rightarrow converging lines. Tiles closer to the camera have a larger image than those farther away.

Fig 1.6. Hartley,Zisserman
13

Projective Transformation

-Decomposition of a projective transformation

$$
\mathrm{H}=\mathrm{H}_{\mathrm{S}} \mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{P}}=\left[\begin{array}{cc}
s \mathrm{R} & \mathbf{t} \tag{1.16}\\
\mathbf{0}^{\top} & 1
\end{array}\right]\left[\begin{array}{cc}
\mathrm{K} & \mathbf{0} \\
\mathbf{0}^{\top} & 1
\end{array}\right]\left[\begin{array}{cc}
\mathrm{I} & \mathbf{0} \\
\mathbf{v}^{\top} & v
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{A} & \mathbf{t} \\
\mathbf{v}^{\top} & v
\end{array}\right]
$$

with A a non-singular matrix given by $\mathrm{A}=s \mathrm{RK}+\mathbf{t v}^{\top}$, and K an upper-triangular matrix normalized as $\operatorname{det} \mathrm{K}=1$. This decomposition is valid provided $v \neq 0$, and is unique if s is chosen positive.

DEach of the above matrices has the "essence" of a transformation of that type (e.g. Similarity, affine and projective)

2D Transformation Groups and Invariants

Group	Matrix	Distortion	Invariant properties
Projective 8 dof	$\left[\begin{array}{lll}h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33}\end{array}\right]$	Concurrency, collinearity, order of contact: intersection (1 pt contact); tangency (2 pt contact); inflections (3 pt contact with line); tangent dis- continuities and cusps. (ratio of ratio of lengths).	
Affine ratio			
6 dof			

a_{21} \& a_{22} \& t_{y}

0 \& 0 \& 1\end{array}\right] \quad\)| Parallelism, ratio of areas, ratio of |
| :--- |
| lengths on collinear or parallel lines |
| (e.g. midpoints), lincar combinations |
| of vectors (e.g. centroids). |
| The line at infinity, l_{∞}. |

Table 1.1. Geometric properties invariant to commonly occurring planar transformations. The matrix $\mathrm{A}=\left|a_{i j}\right|$ is an invertible 2×2 matrix, $\mathrm{R}=\left|r_{i j}\right|$ is a $2 D$ rotation matrix, and $\left(t_{x}, t_{y}\right)$ a $2 D$ translation. The distortion column shows typical effects of the transformations on a square. Transformations higher in the table can produce all the actions of the ones below. These range from Euclidean, where only translations and rotations occur, to projective where the square can be transformed to any arbitrary quadrilateral (provided no three voints are collinear).

The Projective Geometry of 3D

Iransformation	Matrix	\# DoF	Preserves	Icon	Group	Matix	Distortion
					${ }_{\substack{\text { Projective } \\ 15 \text { dot }}}^{\text {der }}$	$\left[\begin{array}{ll} A \\ v^{\top} & t \\ v \end{array}\right]$	
ranslation	$[\boldsymbol{I} \mid \boldsymbol{t}]_{3 \times 4}$	3	orientation				
igid (Euclidean)	$[\boldsymbol{R} \mid \boldsymbol{t}]_{3 \times 4}$	6	lengths	Δ	${ }_{\text {Affine }}^{\text {A dor }}$	[$\left.\begin{array}{ll}\text { A } & \mathbf{t} \\ \mathbf{o}^{\text {r }} & 1\end{array}\right]$	
similarity	$[s \boldsymbol{R} \mid \boldsymbol{t}]_{3 \times 4}$	7	angles				
fffine	$[\boldsymbol{A}]_{3 \times 4}$	12	parallelism	\square	${ }_{7 \text { Slof }}^{\text {Simarity }}$		
projective	$[\tilde{\boldsymbol{H}}]_{4 \times 4}$	15	straight lines	\square	$\underbrace{}_{\substack{\text { Euclidean } \\ 6 \text { dof }}}$	$\left[\begin{array}{ll}\text { R } \\ \mathrm{o}^{\top} & \mathrm{t} \\ 1\end{array}\right]$	

Table 2.2 Hierarchy of 3D coordinate transformations. Each transformation also preserve: the properties listed in the rows below it, i.e., similarity preserves not only angles but alsc parallelism and straight lines. The 3×4 matrices are extended with a fourth $\left[\mathbf{0}^{T} 1\right]$ row tc 16

Figure 2.12 A point is projected into two images: (a) relationship between the 3D point coordinate $(X, Y, Z, 1)$ and the 2D projected point $(x, y, 1, d)$; (b) planar homography induced by points all lying on a common plane $\hat{\boldsymbol{n}}_{0} \cdot \boldsymbol{p}+c_{0}=0$.

Homography Estimation

Figure 5.13. Homography between the left and middle images is determined by the building facade on the top, and the ground plane on the bottom. The right image is the warped image overlayed on the first image based on estimated homography H. Note that all points on the reference plane are perfectly aligned, whereas points outside the reference plane are offset by an amount that is proportional to their distance from the reference plane.

Panoramic Mosaicing

Fig. 8.9. Planar panoramic mosaicing. Eight images (out of thirty) acquired by rotating a camcorder about its centre. The thirty images are registered (automatically) using planar homographies and composed into the single panoramic mosaic shown. Note the characteristic "bow tie" shape resulting from registering to an image at the middle of the sequence

Homography Estimation: Direct Linear Transform

Simple linear algorithm to estimate H

$$
\mathrm{Hx}_{i}=\mathrm{x}_{i}^{\prime}
$$

$$
\mathrm{x}_{i}^{\prime} \times \mathrm{Hx}_{i}=\mathbf{0}
$$

$$
\mathrm{Hx}_{i}=\left(\begin{array}{l}
\mathbf{h}^{1 \top} \mathbf{x}_{i} \\
\mathbf{h}^{2 \top} \mathbf{x}_{i} \\
\mathbf{h}^{3 \top} \mathbf{x}_{i}
\end{array}\right)
$$

with

$$
\mathbf{x}_{i}^{\prime}=\left(x_{i}^{\prime}, y_{i}^{\prime}, w_{i}^{\prime}\right)^{\top}
$$

$$
\mathbf{x}_{i}^{\prime} \times \mathrm{Hx}_{i}=\left(\begin{array}{c}
y_{i}^{\prime} \mathbf{h}^{3 \top} \mathbf{x}_{i}-w_{i}^{\prime} \mathbf{h}^{2 \top} \mathbf{x}_{i} \\
w_{i}^{\prime} \mathbf{h}^{1 \top} \mathbf{x}_{i}-x_{i}^{\prime} \mathbf{h}^{3 \top} \mathbf{x}_{i} \\
x_{i}^{\prime} \mathbf{h}^{2 \top} \mathbf{x}_{i}-y_{i}^{\prime} \mathbf{h}^{1 \top} \mathbf{x}_{i}
\end{array}\right)
$$

$\longrightarrow\left[\begin{array}{ccc}0^{\top} & -w_{i}^{\prime} \mathbf{x}_{i}{ }^{\top} & y_{i}^{\prime} \mathbf{x}_{i}^{\top} \\ w_{i}^{\prime} \mathbf{x}_{i}^{\top} & 0^{\top} & -x_{i}^{\prime} \mathbf{x}_{i}^{\top} \\ -y_{i}^{\prime} \mathbf{x}_{i}^{\top} & x_{i}^{\prime} \mathbf{x}_{i}^{\top} & 0^{\top}\end{array}\right]\left(\begin{array}{l}\mathbf{h}^{1} \\ \mathbf{h}^{2} \\ \mathbf{h}^{3}\end{array}\right)=\mathbf{0}$.

$$
\mathbf{h}=\left(\begin{array}{l}
\mathbf{h}^{1} \tag{3.1}\\
\mathbf{h}^{2} \\
\mathbf{h}^{3}
\end{array}\right), \quad \mathbf{H}=\left[\begin{array}{lll}
h_{1} & h_{2} & h_{3} \\
h_{4} & h_{5} & h_{6} \\
h_{7} & h_{8} & h_{9}
\end{array}\right]
$$

These equations have the form $\mathrm{A}_{i} \mathrm{~h}=0$, where A_{i} is a 3×9 matrix

Homography Estimation: The Basic DLT

3.1 The Direct Linear Transformation (DLT) algorithm

Objective

Given $n \geq 42 \mathrm{D}$ to 2D point correspondences $\left\{\mathrm{x}_{i} \leftrightarrow \mathrm{x}_{i}^{\prime}\right\}$, determine the 2D homography matrix H such that $\mathrm{x}_{i}^{\prime}=\mathrm{Hx}_{i}$.

Algorithm
(i) For each correspondence $\mathbf{x}_{i} \leftrightarrow \mathrm{x}_{i}^{\prime}$ compute the matrix A_{i} from (3.1). Only the first two rows need be used in general.
(ii) Assemble the $n 2 \times 9$ matrices A_{i} into a single $2 n \times 9$ matrix A .
(iii) Obtain the SVD of A (section A3.3(p556)). The unit singular vector corresponding to the smallest singular value is the solution h. Specifically, if $A=U D V^{\top}$ with D diagonal with positive diagonal entries, arranged in descending order down the diagonal, then h is the last column of V .
(iv) The matrix H is determined from h as in (3.2).

Algorithm 3.1. The basic DLT for H (but see algorithm 3.2(p92) which includes normalization).

Homography Estimation: The Basic DLT

DIf more than 4 point correspondences are given

- Over-determined system

IIf the positions of points are exact, rank of A still 8 then we still have 1-dim null space for h
DIf measurements of image coord are not exact ("noise") there will not be an exact solution to the overdetermined system $A h=0$ other than $h=0$
-Then search for an approx soln (instead of $A h=0$)

- Minimize a cost function with a constraint on h

$$
\min \|A h\| \text { s.t. }\|h\|=1
$$

- The constraint avoids $h=0$
- The solution is the (unit) eigenvector of $A^{\top} A$ with least eigen value

DLT: Direct Linear Transform revisited

- DLT not invariant to image coordinate transformation: e.g. a similarity transformation

Let T and T be two similarity transformations:

$$
\begin{aligned}
& \tilde{\mathbf{x}}_{i}=\mathrm{Tx}_{i} \\
& \tilde{\mathrm{x}}_{i}^{\prime}=\mathrm{T}^{\prime} \mathrm{x}_{i}^{\prime}
\end{aligned}
$$

\square Substitute in $\quad \mathrm{x}^{\prime}=\mathrm{Hx}, \quad \tilde{\mathrm{x}}^{\prime}=\mathrm{T}^{\prime} \mathrm{HT}^{-1} \tilde{\mathrm{x}}$
\square This changes the minimization of the algebraic error

$$
\|\mathbf{A h}\|=s\| \| \overline{\mathrm{A}} \tilde{\mathbf{h}} \|
$$

with the norm constraint $\|h\|=1$ now becomes $\|h \sim\|=1$ (Recall h is the vector entries of homography $\mathrm{H}_{3 \times 3}$ elements)

Solution: Normalize the data before applying the DLT to handle the arbitrary origin and scale of image coordinates \rightarrow Algo 3.2

Normalized DLT for 2D homographies

Objective

Given $n \geq 42 \mathrm{D}$ to 2D point correspondences $\left\{\mathrm{x}_{i} \leftrightarrow \mathrm{x}_{i}^{\prime}\right\}$, determine the 2D homography matrix H such that $\mathbf{x}_{i}^{\prime}=\mathrm{Hx}_{i}$.

Algorithm

(i) Normalization of x : Compute a similarity transformation T , consisting of a translation and scaling, that takes points x_{i} to a new set of points $\tilde{\mathbf{x}}_{i}$ such that the centroid of the points $\tilde{\mathrm{x}}_{i}$ is the coordinate origin $(0,0)^{\top}$, and their average distance from the origin is $\sqrt{2}$.
(ii) Normalization of x^{\prime} : Compute a similar transformation T^{\prime} for the points in the second image, transforming points x_{i}^{\prime} to $\tilde{\mathbf{x}}_{i}^{\prime}$.
(iii) DLT: Apply algorithm $3.1(p 73)$ to the correspondences $\tilde{\mathbf{x}}_{i} \leftrightarrow \tilde{\mathbf{x}}_{i}^{\prime}$ to obtain a homography $\widetilde{\mathrm{H}}$.
(iv) Denormalization: Set $\mathrm{H}=\mathrm{T}^{t-1} \overline{\mathrm{H} T}$.

Algorithm 3.2. The normalized DLT for 2D homographies.

Note: Data normalization is an essential step of DLT!

Robust Estimation of the Homography

\square Until now, we inherently assumed that point correspondences $x_{i} \leftrightarrow x_{i}^{\prime}$ had only source of error in the measurements of point position (with a Gaussian distribution)
\square Mismatched points
$\rightarrow \rightarrow$ outliers to Gaussian error distribution

- Will severely affect the estimated homography
- Should be identified
\square Goal: determine a set of inliers from the presented correspondences so that the homography can be estimated in an optimal manner
$\square \rightarrow$ This is robust estimation! Robust (tolerant) to outliers (measurements following a possibly unmodelled error distribution)

Robust Estimation

\square Robust Line Estimation: Regression problem Fig 3.7. [HZbook]

Inliers: Solid points, Outliers: Open points
\square RANSAC Idea: Select two points randomly-> they define a line.
\square Measure the support by no. of points that lie within a distance threshold
\square Repeat this random selection a number of timesThe line with the most support is the robust fit.Inliers: points within the threshold distance (consensus set)If a point is an outlier, that line will not gain much support!

Matching features

RAndom SAmple Consensus

RAndom SAmple Consensus

36

RANSAC for estimating homography

- RANSAC loop:

1. Select four feature pairs (at random)
2. Compute homography H (exact)
3. Compute inliers where $\operatorname{SSD}\left(p_{i}{ }^{\prime}, H p_{i}\right)<\varepsilon$
4. Keep largest set of inliers (in case of ties, choose the solution with lowest std dev of inliers)
5. Re-estimate H on all of the inliers

39

RANSAC: RAndom SAmple Consensus

- Generally: we want to fit a model to the data (e.g. a line in the previous ex, or a homography to point correspondences)
\square Random sample consists of a minimal subset of the data sufficient to determine the model (e.g. two points for a line)If the model is a planar homography, and the data a set of 2D point correspondences, then the minimal subset contains 4 correspondences.
\square As Fischler and Bolles put it [Fischler-81]
"The RANSAC procedure is opposite to that of conventional smoothing techniques: Rather than using as much of the data as possible to obtain an initial solution and then attempting to eliminate the invalid points, RANSAC uses as small an initial dataset as feasible and enlarges this set with consistent data when possible"
$\square \rightarrow$ Use RANSAC in homography estimation

Robust Estimation: General RANSAC Algo

Objective

Robust fit of a model to a data set S which contains outliers.
Algorithm
(i) Randomly select a sample of s data points from S and instantiate the model from this subset.
(ii) Determine the set of data points S_{i} which are within a distance threshold t of the model. The set S_{i} is the consensus set of the sample and defines the inliers of S.
(iii) If the size of S_{i} (the number of inliers) is greater than some threshold T, re-estimate the model using all the points in S_{i} and terminate.
(iv) If the size of S_{i} is less than T, select a new subset and repeat the above.
(v) After N trials the largest consensus set S_{i} is selected, and the model is re-estimated using all the points in the subset S_{i}.

Algorithm 3.4. The RANSAC robust estimation algorithm, adapted from [Fischler-81]. A minimum of s data points are required to instantiate the free parameters of the model. The three algorithm thresholds t, T, and N are discussed in the text.

41

RANSAC Parameters

\square 1. Distance threshold t? in practice, chosen empirically
Table 3.2 [HZbook] probabilistic \dagger values: $\dagger^{2}=c \sigma$, where $\operatorname{Normal}(0, \sigma)$ measurement error2. How many sample sets? N samples: number of samples sufficiently high to ensure with a probability p (usually $p=0.99$) that at least 1 sample set is free from outliers

- w: prob that a point is an inlier $\rightarrow \varepsilon=1-w$ prob of outlier
- At least N selections (each has s points) are required: $\left(1-w^{s}\right)^{N}=1-p$

$$
\begin{equation*}
N=\log (1-p) / \log \left(1-(1-\epsilon)^{s}\right) \tag{3.18}
\end{equation*}
$$

```
- N=\infty, sample_count=0.
- While N> sample_count Repeat
    - Choose a sample and count the number of inliers.
    - Set }\epsilon=1\mathrm{ - (number of inliers)/(total number of points)
    - Set N from \epsilon and (3.18) with p=0.99.
    - Increment the sample_count by 1.
- Terminate.
```

[^0]
RANSAC Parameters

口3. How large is an acceptable consensus set?
Rule of thumb: terminate if
size of consensus set ~ estimated number of inliers believed to be in the data

Ex:

ع: prob of outliers $=0.2$ (20\%)
For a total of n data points:

$$
\begin{aligned}
& T=(1-\varepsilon) n=0.8 * n \text { : estimated no of inliers in the dataset } \\
& \text { T would be a good estimate for an acceptable number of } \\
& \text { data points expected in the consensus set }
\end{aligned}
$$

Automatic Computation of a Homography

Objective
Compute the 2D homography between two images.
Algorithm
(i) Interest points: Compute interest points in each image.
(ii) Putative correspondences: Compute a set of interest point matches based on proximity and similarity of their intensity neighbourhood.
(iii) RANSAC robust estimation: Repeat for N samples, where N is determined adaptively as in algorithm 3.5 :
(a) Select a random sample of 4 correspondences and compute the homography H .
(b) Calculate the distance d_{\perp} for each putative correspondence.
(c) Compute the number of inliers consistent with H by the number of correspondences for which $d_{\perp}<t=\sqrt{5.99} \sigma$ pixels.
Choose the H with the largest number of inliers. In the case of ties choose the solution that has the lowest standard deviation of inliers.
(iv) Optimal estimation: re-estimate H from all correspondences classified as inliers, by minimizing the ML cost function (3.8-p78) using the LevenbergMarquardt algorithm of section A4.2(p569).
(v) Guided matching: Further interest point correspondences are now determined using the estimated H to define a search region about the transferred point position.

The last two steps can be iterated until the number of correspondences is stable.
Algorithm 3.6. Automatic estimation of a homography between two images using RANSAC

45

Error functions in estimating H

-DLT algo minimizes the norm \|Ah\|. The vector $\varepsilon=\|A h\|$ is called the residual vector.
-Each correspondence $x_{i} \leftrightarrow x_{i}^{\prime}$ contributes to a partial error vector ε_{i} toward the full error: called the algebraic error vectorThe norm of this distance is the algebraic distance:

$$
d_{\mathrm{alg}}\left(\mathbf{x}_{i}^{\prime}, \mathrm{Hx}_{i}\right)^{2}=\left\|\epsilon_{i}\right\|^{2}=\left\|\left[\begin{array}{ccc}
\mathbf{0}^{\top} & -w_{i}^{\prime} \mathbf{x}_{i}^{\top} & y_{i}^{\prime} \mathbf{x}_{i}^{\top} \tag{3.4}\\
w_{i}^{\prime} \mathbf{x}_{i}^{\top} & \mathbf{0}^{\top} & -x_{i}^{\prime} \mathbf{x}_{i}{ }^{\top}
\end{array}\right] \mathbf{h}\right\|^{2} .
$$

-Error for the complete set:

$$
\begin{equation*}
\sum_{i} d_{\mathrm{alg}}\left(\mathrm{x}_{i}^{\prime}, \mathrm{Hx}_{i}\right)^{2}=\sum_{i}\left\|\epsilon_{i}\right\|^{2}=\|\mathrm{Ah}\|^{2}=\|\epsilon\|^{2} . \tag{3.5}
\end{equation*}
$$

Error functions in estimating H (geometric error)

Fig 3.2: Symmetric transfer error (geometric error) minimizes

$$
\begin{equation*}
\sum_{i} d\left(\mathbf{x}_{i}, \mathrm{H}^{-1} \mathbf{x}_{i}^{\prime}\right)^{2}+d\left(\mathbf{x}_{i}^{\prime}, \mathrm{Hx}_{i}\right)^{2} . \tag{3.7}
\end{equation*}
$$

- image measurement errors occur in both images x and x^{\prime} are measured image coordinates (noisy points)
1st (2nd) term: transfer error in the 1st(2nd) image
$\square \mathrm{d}$: Euclidean image distance

Iterative Minimization Methods

Minimize the geometric errors like the symmetric error through iterative minimizations such as
Newton's method
Levenberg-Marquardt method
Setting up the iterative minimization:
\square Recall symmetric cost function:
\min

$$
\sum_{i} d\left(\mathbf{x}_{i}, \mathrm{H}^{-1} \mathbf{x}_{i}^{\prime}\right)^{2}+d\left(\mathbf{x}_{i}^{\prime}, \mathrm{Hx}_{i}\right)^{2}
$$

Define a function

$$
f: \mathbf{h} \mapsto\left(\mathrm{H}^{-1} \mathbf{x}_{1}^{\prime}, \ldots, \mathrm{H}^{-1} \mathbf{x}_{n}^{\prime}, \mathrm{Hx}_{1}, \ldots, \mathrm{Hx}_{n}\right)
$$

An initial estimate for h can be found from e.g.Algo 3.2

Assignments

\square Reading: Hartley-Zisserman book Chap 3 (Homography estimation)
\square Next time: Zhang's paper, A flexible New technique for Camera Calibration Study the paper/technical report by Zhang on his Camera Calibration technique, on the board
-Camera Calibration Implementation: Check Bouget's Website, his camera calibration links, etc http://www.vision.caltech.edu/bouguetj/

- Gather components of the code
- Build the grid
- Experiment and Test it!

[^0]: Algorithm 3.5. Adaptive algorithm for determining the number of RANSAC samples.

