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Recap until now


3D Vision


• Camera calibration


• Homography Estimation


• Stereopsis

• Matching to establish correspondences 

• Estimate Fundamental matrix

• Stereo rectification

• Compute disparity

• RANSAC


• Feature Extraction and Matching



Overview of today’s lecture

Video


Motion estimation


• Motion detection

• Optical flow:  Horn-Schunck and Lucas Kanade


Feature tracking using the KLT tracker


Which features to track: min eigenvalue detector /Corner Detection idea




Video

Video is simply a series of images over time.  

Cristiano Ronaldo Free Kick tutorial:


https://www.youtube.com/watch?v=dwDds_zdtXI 



Video as a multi-dimensional signal

We can describe an video as a signal I(x, y, t) with two spatial coordinates 
x, y and a temporal coordinate, t

xy

t



Frame rate


One of the defining characteristics of video is the framerate, usually measured 
in frames per second (FPS), or Hertz (Hz).  Common framerates:

• 24 Hz:  Traditional film

• 25 Hz:  PAL format

• 50/60 Hz: Used in high end TVs. Most modern cameras can record video at 

this rate.

• Higher framerates possible (depending on hardware):


The Slow Mo Guys: paint on a speaker: (2:43) https://www.youtube.com/watch?v=5WKU7gG_ApU

https://www.youtube.com/watch?v=5WKU7gG_ApU


vision.videoFileReader

 Matlab has a vision.videoFileReader that is quite similar to VideoFileReader, 

but is part of the Computer Vision System toolbox.  There is also a 
vision.videoFileWriter.


videoReader = vision.VideoFileReader('atrium.avi');

I = step(videoReader);

% Show first frame

imshow(I);

 

% Loop over other frames

while ~isDone(videoReader)

     I = step(videoReader);

     image(I);  % image is faster than imshow

     pause(1/videoReader.info.VideoFrameRate);

end


http://uk.mathworks.com/help/vision/ref/vision.videofilereader-class.html
http://uk.mathworks.com/help/vision/ref/vision.videofilewriter-class.html


Video (Image Sequence) analysis


One can apply computer vision techniques to video to solve a variety of problems.

Super-resolution

Tracking
Motion estimation

Structure from motion



Augmenting a video

Place synthetic objects into a video stream by processing each video frame. 



Background subtraction

• A classic computer vision problem is to detect change in a video.  A simple 
way to achieve this is to use a background image.  One can compute the 
difference between the image and background, and threshold the result.


• This identifies pixels whose colour has changed.

Background (B)Image (I) Thresholded difference (M)

http://wordpress-jodoin.dmi.usherb.ca/dataset2014/



⇨ What are some limitations to this approach?

• Dynamic background, camera motion, shadows, changes in scene (weather, 

illumination), clutter

In code

I = double(imread('frame.jpg'));

B = double(imread('background.jpg'));

figure; imshow(I/255);

figure; imshow(B/255);

 

% Compute the absolute difference image

F = abs(I-B);

 

% Find maximum change in each colour 
channel

J = max(max(F(:,:,1), 
F(:,:,2)),F(:,:,3));

 

% Threshold

M = J > 40;

figure; imshow(M);




In code

I = double(imread('frame.jpg'));

B = double(imread('background.jpg'));

figure; imshow(I/255);

figure; imshow(B/255);

 

% Compute the absolute difference image

F = abs(I-B);

 

% Find maximum change in each colour 
channel

J = max(max(F(:,:,1), 
F(:,:,2)),F(:,:,3));

 

% Threshold

M = J > 40;

figure; imshow(M);

 

% Post processing: keep the largest blob 
and fill holes

L = bwlabel(M);

stat = 
regionprops(L,'Area','PixelIdxList');

[maxValue,index] = max([stat.Area]);

G = zeros(size(M));

G(stat(index).PixelIdxList) = 1;

H = imfill(G, 'holes');

figure;




More complex models

• Improved background modeling

◦ One can form the background using an average (or median) of the last N 

frames.  This will allow the background to adapt, e.g., based on time of day.  

◦ Although individual frames may have foreground objects, if they move quickly 

enough, their effect on the background image will be small.


• Per-pixel Gaussian fitting

◦ For each pixel, one can determine the mean               and standard deviation 	            

of the intensity (or colour) based on the last N frames.

◦ A pixel can then be classified as foreground if its value lies outside some 

confidence interval of the mean.

◦ Note: there are fast ways to incrementally update the mean and standard 

deviation with each new frame.



vision.ForegroundDetector

• Matlab comes with vision.ForegroundDetector, which is a system object that 
detects foreground pixels from a stationary camera, using Gaussian Mixture 
Models (GMMs).


• This combines K (default 5) Gaussians to model the intensity at a pixel through 
time.  A pixel is compared to the Gaussians, and the best matching Gaussian 
adapts based on a learning rate.

videoSource = vision.VideoFileReader('viptraffic.avi');

detector = vision.ForegroundDetector('NumTrainingFrames', 5);

blob = vision.BlobAnalysis('MinimumBlobArea', 250);

shapeInserter = vision.ShapeInserter('BorderColor', 'White');

   

figure;

while ~isDone(videoSource)

   frame  = step(videoSource);

   fgMask = step(detector, frame);

   [area, centroid, bbox]   = step(blob, fgMask);

   out    = step(shapeInserter, frame, bbox);

   imshow(out);

end

http://www.ai.mit.edu/projects/vsam/Publications/stauffer_cvpr98_track.pdf 

http://www.ai.mit.edu/projects/vsam/Publications/stauffer_cvpr98_track.pdf
http://www.ai.mit.edu/projects/vsam/Publications/stauffer_cvpr98_track.pdf


Optical flow

• Change detection only says which pixels in image have differences due to 
motion.  It doesn’t provide any insight on the direction objects are moving.


• Optical flow is the motion observed in a video resulting from the relative 
motion between the camera and the scene. 


• It is typically represented as a vector field, which is a collection of vectors 
showing which way pixels are moving in the image.

www.mathworks.com/examples/matlab/community/20141-lucas-kanade-method-example-1



2D velocity field – Motion Field

(Heeger, 1998)

Def: 2D velocity field or the optical flow field approximates the true motion field:  
the [2D] projection into the image [plane] of [the sequence’s] 3D motion vectors” 
“It is a purely geometrical concept” – Horn and Schunk 1993
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≠

Motion field exists but no optical flow No motion field but shading changes

Optical Flow          Motion Field
Ideally Motion field = Optical Flow field (apparent motion) but this is not 
true



Motion Field and Optical Flow

https://en.wikipedia.org/wiki/Barberpole_illusion 

This is due to the aperture problem (we’ll see soon), 
the motion appears to be going up rather than rotating 
around the pole. 

https://en.wikipedia.org/wiki/Barberpole_illusion
https://en.wikipedia.org/wiki/Barberpole_illusion


2D Apparent Motion = Optical Flow

• Our goal:  to determine the motion (u, v) of a pixel at (x, y)

• Often an assumption that brightness is constant is made.  Under this 

assumption, a pixel at (x, y) moves to a location (x+u, y+v) at the next frame, 
where (u, v) is a spatial displacement.  The colour (brightness) doesn’t change 
as a result of the motion.


• Also, there is a small motion assumption, i.e. the points do not move very far 


• Under the Brightness Constancy assumption, we can write

(x,y)

(x+delta x,y+delta y)

frame t frame t+1

(u, v) 

I (x+uδt, y+ vδt,t +δt) = I (x, y,t)



I (x, y,t)+δx ∂I
∂x
+δ y ∂I

∂y
+δt ∂I

∂t
= I (x, y,t)

Taylor series expansion

• If we assume the motion is small, we can use a Taylor series expansion on the 
left hand side to get 


     


  dividing by delta t, the above equation can be rewritten as

Image derivative in x Image derivative in yImage derivative in time
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Image Gradient Vector:

http://mathworld.wolfram.com/TaylorSeries.html


Optical flow constraint equation

• Hence, using the brightness constancy assumption,                                                          
we obtain:


     which can be rewritten as


• This equation (or the one above) is known as the optical flow constraint 
equation.


⇨ This equation gives a relationship between the change in brightness (or colour) 
in the image and the motion (u, v) of a pixel.  But is this equation sufficient to 
recover the image motion?


• No, it provides one equation for two unknowns (u, v).  



Finding Gradients in X-Y-t
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We can compute spatial and temporal 
derivatives

For example: 



Optical Flow Constraint

• Intuitively, what does this constraint mean?

Q: How can you project a vector onto a given direction? 
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– The component of the flow in the gradient direction is 
determined


– The component of the flow parallel to an edge is unknown
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Normal optical flow: 

This is called the Aperture Problem:

Only the component of the flow in the image gradient 

( normal) direction is determined:

The aperture problem
! The component of the motion parallel to the gradient (edge) cannot be measured 
this way.  



The aperture problem



Motion viewed 
along just an edge 
is ambigous

The aperture problem



The aperture problem

Perceived motion



Horn-Schunck method

• To resolve this ambiguity and solve for the optical flow, we require an additional 
constraint.


• The Horn-Schunck model additionally assumes that the optical flow field is 
smooth, so that a motion vector (u, v) at a pixel (x, y) is similar to that of its 
neighbouring pixels. 


• Specifically, it seeks to minimise the following energy (cost functional):


• One can derive the above energy functional giving the (u, v) that minimises the 
above equation using Euler-Lagrange equations. Note the solution is iterative.


• You are responsible in understanding the two terms above, how the cost 
functional is set up, and how Euler-Lagrange derivation is taken. 

Should be 0 from brightness constancy Penalises changes in motion vectors

B.K.P. Horn and B.G. Schunck, "Determining optical flow." Artificial Intelligence, vol 
17, pp 185–203, 1981. 

https://en.wikipedia.org/wiki/Horn%E2%80%93Schunck_method

http://dspace.mit.edu/bitstream/handle/1721.1/6337/AIM-572.pdf?sequence=2


Computing Optical Flow
• Formulate Error in Optical Flow Constraint: (E: image function)


• We need additional constraints!


• Smoothness Constraint (Horn and Schunck 1981):


	 Usually motion field varies smoothly in the image. 

	 So, penalize departure from smoothness:


•  Hence use gradient magnitudes of motion field components as 
a regularizer

dydxEvEuEC ty
image
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22 )( ++= ∫∫

dydxvvuuC yxyx
image

c )()( 22222 +++= ∫∫



Find (u,v) at each image point that MINIMIZES the total error:


C = (Ex
image
∫∫ u+Eyv+Et )2 +α 2(∇u 2 + ∇v 2 ) dx dy

222
cb CCC α+= α2 : weighting factor 

Computing Optical Flow by Horn Schunck method



* Minimize the total error C using calculus of variations:

Use Euler-Lagrange (E-L) equations to find the necessary condition 
for a minimizer of C

C = (Ex
image
∫∫ u+Eyv+Et )2 +α 2(∇u 2 + ∇v 2 ) dx dy

C(u) = f (u,∇u, x)dx
Ω

∫
fu −div( f∇u) = 0

Necessary condition that minimizes C 
is given by:

With E-L conditions, it is possible to take a functional derivative to 
estimate an unknown function in a cost functional C 

Computing Optical Flow

Generally, for an integrand with unknown u: 

f_u or f_nabla u indicates derivative of the 
integrand f wrt to those functions



Horn-Schunck OF: Minimization

* Minimize the total error C using its Euler-Lagrange eqns:

Using the approximation of the Laplacian – Eq (*)  introduced in Horn-Schunck paper (see next slide), the 
above equations are rewritten as:

Note: In the exam, you are responsible in understanding the derivations until this 
point, not below. However, it is educational for you to go over those to know about 
details of one of the pioneering motion estimation algorithms in computer vision.



Horn & Schunck’s Optical Flow

Approximate the Laplacians of u and v as follows:


(*)



Horn & Schunk Optical Flow Algorithm



Horn & Schunk OF: Iterative Solution

• We now have a pair of equations for each point in the image. 

We can compute a new set of velocity estimates  (un+1, vn+1) from the estimated 
derivatives and the average of the previous velocity estimates (un, vn) by:

 Also, Iterative methods, such as the Gauss-Seidel method can be used.

Check the paper or elsewhere for details.



Horn-Schunck in Matlab

• In Matlab, you can implement optical flow using Horn-Schunck using the 
estimateFlow function and an opticalFlowHS object.


• Syntax(es)

◦ flow = estimateFlow(I, obj) where I is a grayscale image and obj 

is an opticalFlow object.  

◦ obj = opticalFlowHS(Name, Value) where Name/Value are 

optional arguments, e.g., 'Smoothness', 0.5 or 'MaxIteration', 15

http://uk.mathworks.com/help/vision/ref/opticalflowlk.estimateflow.html
http://uk.mathworks.com/help/vision/ref/opticalflowhs-class.html


Varying parameters

'Smoothness', 0.5 'Smoothness', 1.5 

'MaxIteration', 5 'MaxIteration', 15 



Lucas-Kanade

• The Lucas-Kanade method also assumes spatial coherence, but unlike Horn-
Schunck, it assumes a pixel’s neighbours have the same (u, v) for a particular t.


• If we use, say a 5x5 window, this gives us N=25 equations, namely the optical 
flow constraint equation for each pixel in the window.


• This results in an over-determined set of linear equations -- more equations (N) 
than unknowns (2).



Lucas-Kanade

• We can write this in matrix form as


• And solve using least squares as 


• The summations are over all the N pixels in the window.  

Nx2 2x1 Nx1



Lucas-Kanade in Matlab

• In Matlab, you can implement optical flow using Lucas-Kanade using the 
estimateFlow function and an opticalFlowLK object.


• Syntax

◦ obj = opticalFlowLK(Name, Value) where Name/Value are 

optional argument for a noise threshold: 'NoiseThreshold', 0.005

http://uk.mathworks.com/help/vision/ref/opticalflowlk.estimateflow.html
http://uk.mathworks.com/help/vision/ref/opticalflowlk-class.html


Farneback’s method

• Farneback’s method locally models the image brightness as a 2D polynomial 
function, and computes the translation between frames.  It uses a pyramidal 
(coarse to fine) approach and is iterative.


• Syntax

◦ obj = opticalFlowFarneback(Name, Value) where Name/Value 

are optional arguments, for example: 'NumPyramidLevels', 2 or 
'NumIterations', 5

http://uk.mathworks.com/help/vision/ref/opticalflowfarneback-class.html


When it works (and when it doesn’t)

• When optical flow excels

◦ Corners (these do not have an aperture problem)


• When optical flow may fail

◦ Brightness constancy is not satisfied

◦ Large displacement

◦ Textureless regions

◦ Edges

◦ A point does not move like its neighbours

◦ Occlusions



Goal: Determine which direction objects are moving

http://www.mathworks.com/matlabcentral/fileexchange/48745-lucas-kanade-tutorial-example-2 



Result



Optical flow fields – moving camera

http://www1.cs.columbia.edu/CAVE/projects/spedo/images/SpeckleFlowForCameraMotions.png 



Scene flow

• For dynamic scenes (and a static camera), optical flow is the 2D motion 
observed in the image of moving objects.  Note though, the objects themselves 
are moving in 3D; the optical flow is merely a projection of the 3D motion.


• Scene flow is a 3D vector field that exists on a surface, indicating which direction 
points are moving.

https://raweb.inria.fr/rapportsactivite/RA2011/morpheo/uid39.html



Feature point tracking

• Many computer vision problems involving video require detecting and tracking 
important points (i.e., features, like corners) through time.


• This differs from optical flow.  Instead of computing motion vectors at each pixel, 
we identify a smaller set of distinctive feature points and track them.


• Typically the problem is easier if the motion is small.


• However, there are challenges:

◦ Finding good features to track

◦ Efficiency

◦ Changing appearance (specular highlights, shadows)

◦ Drift (accumulating error)

◦ Points getting lost (occlusion, or out of field of view)

◦ Occlusion and disocclusion



Feature point tracking

•Minimum eigenfeature + KLT tracking is a good option 
 


•Want to handle the case that new points may come into the 
field of view, and old points may leave the field of view

◦



What makes for a good feature?

• A good feature should be distinctive, not suffer from the aperture problem, and 
be consistent through the video.  

t

t+1

aperture problem not distinctive good

Edge Homogenous region Corner



• Recall corner detection from your earlier CV or Image Proc course (?)

• Corners are a type of feature point, as they are distinctive and do not suffer from 

the aperture problem.

• Corner detectors look for points where there is a significant change in intensity in 

two perpendicular directions in a neighbourhood around a pixel.  


• However, we’d like to detect corners that are not axis-aligned as in the above 
example.


• This can be achieved by looking at the eigenvalues of the structure tensor.

Ix is large

Iy is large

Corner detectors

Ix is small

Iy is small

Ix is large

Iy is small



E(u,v) = w(x, y) I (x+u, y+ v)− I (x, y)⎡⎣ ⎤⎦
2

x,y
∑

Change of intensity for the shift [u,v]:

Corner (Harris) Detector (Mathematics)

Let’s analyze the local intensity changes :



S is called the Image Structure Tensor

S= w(x, y)
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Corner Detector (Mathematics)
For small shifts (u,v), we have  the following approximation (after Taylor series 
expansion on I(x+u,y+v) and expanding the quadratic term):

Where S is a 2x2 matrix computed from image derivatives in the given 
window: 
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Image Structure Tensor

• W is the window of a fixed size in your image, (xi,yi) pixel coordinates in 
that window.


• Ix and Iy are the local approximations to the first order partial derivatives of 
the image I, which is the filtered image with a Gaussian filter

I x =
∂I
∂x

=
I (x+1, y)− I (x−1, y)

2
I y =
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Structure tensor

• The structure tensor is a 2D matrix constructed by blurring the products of first 
order derivatives, for example using a Gaussian kernel G(x,y).  It is defined as


• The structure tensor summarises the distribution of the image gradient in a 
neighbourhood (due to the convolution with G) around a point (x, y).



Structure tensor

• Example code

J = double(rgb2gray(imread('shapes.png')));

G = fspecial('gaussian', 11, 1);

I = imfilter(J, G);

 

% Compute derivatives Ix and Iy

Kx = 0.5*[-1 0 1]; Ky = K’;

Ix = imfilter(I, Kx);

Iy = imfilter(I, Ky);


% Get elements in the structure tensor

IxIx = Ix.*Ix; 

IxIy = Ix.*Iy; 

IyIy = Iy.*Iy;

 

% Blur

G = fspecial('gaussian', 11, 3);

s11 = imfilter(IxIx, G);

s12 = imfilter(IxIy, G);

s22 = imfilter(IyIy, G);




Corner Detector (Mathematics)

Intensity change in shifting window: perform eigenvalue analysis on S

λ2 ≥ λ1 : eigenvalues of S

S(x, y) =
(I x(xi , yi ))
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V : Eigenvector matrix of S

http://www.visiondummy.com/2014/04/geometric-interpretation-covariance-matrix/

Σ
covariance 
matrix of the 
data

Recall: 



Eigenvalues and eigenvectors

• One can perform an eigenanalysis of the structure tensor.  This represents the 
structure tensor as 


where      is a rotation matrix, and       and       are eigenvalues that represent the 
strength of the gradient along the eigendirections, which form the columns of   


  

• The eigenvalues can be ordered so      >      .  Note that since S is a symmetric 

matrix, the eigenvalues are positive.



In Matlab

• In Matlab, this can be achieved used [U, D, V] = svd(S), where

◦ V is the rotation matrix, composed of eigenvectors along the columns, and

◦ D is a diagonal matrix, composed of eigenvalues along the diagonal.


• Toy example:

	 S = [2 -1; -1 2];


[U, D, V] = svd(S)

U =


   -0.7071    0.7071

    0.7071    0.7071


D =


    3.0000         0

         0    1.0000


V =


   -0.7071    0.7071

    0.7071    0.7071

You can think of this as an ellipse, aligned 
based on the predominant edge



Eigenvalue analysis

• There are three common scenarios:

◦ Both eigenvalues are large: corner

◦ One eigenvalue is large, the other small: edge

◦ Both eigenvalues small:  homogeneous region



Minimum eigenvalue corner detection

• Since the eigenvalues are positive, one can look at the smaller of the two 
eigenvalues.  If this is large enough, then a corner has been identified.


• Example: looking at the value of            [Shi and Tomasi, ‘94]

% Compute min eigenvalue: see Equation 7 of 

% http://www.soest.hawaii.edu/martel/Courses/GG303/Eigenvectors.pdf
lambda2 = 0.5*( (s11+s22)-((s11-s22).^2+4*s12.^2).^0.5 );

figure; imshow(lambda2, []);


Image

http://www.soest.hawaii.edu/martel/Courses/GG303/Eigenvectors.pdf
http://www.soest.hawaii.edu/martel/Courses/GG303/Eigenvectors.pdf


Min eigenvalue detector (Matlab)

• In Matlab, you can use the function detectMinEigenFeatures to find corners 
based on the minimum eigenvalue technique.  The syntax is


points = detectMinEigenFeatures(I, Name, Value)

where I is a (grayscale) image, and Name/Value are optional arguments

◦ 'ROI', [1 1 size(I,2) size(I,1)] (default):  the portion of the image 

in which to look for corners	 

◦ 'FilterSize', 5 (default):  used to set the Gaussian filter size/std.dev
◦ 'MinQuality', 0.01 (default):  increasing can remove erroneous corners	


• Matlab returns points as a cornerPoints object that includes the points and the 
minEigenvalue

I = double(rgb2gray(imread('shapes.png')));

corners = detectMinEigenFeatures(I);

p = corners.selectStrongest(20);

I = insertMarker(I, p, '+', 'Color', 'red');

imshow(I); 


http://uk.mathworks.com/help/vision/ref/detectmineigenfeatures.html


Harris corner detector (in more depth)

• Harris proposed looking for corners based on a cornerness function


• Where      is a constant in the range [0.04, 0.06]
% Compute cornerness in the Harris corner detector

alpha = 0.05;

lambda1 = 0.5*( (a+d)+((a-d).^2+4*b.^2).^0.5 );

lambda2 = 0.5*( (a+d)-((a-d).^2+4*b.^2).^0.5 );

C = lambda1.*lambda2-alpha*(lambda1+lambda2).^2;

figure; imshow(C,[]);

 


Image



Super easy in fact

• In Matlab, you can use the function detectHarrisFeatures to find corners based 
on the Harris technique.  The syntax is


points = detectHarrisFeatures(I, Name, Value)

where I is a (grayscale) image, and Name/Value are optional arguments

◦ 'ROI', [1 1 size(I,2) size(I,1)] (default):  the portion of the image 

in which to look for corners	 

◦ 'FilterSize', 5 (default):  used to set the Gaussian filter size/std.dev
◦ 'MinQuality', 0.01 (default):  increasing can remove erroneous corners	


• Matlab returns points as a cornerPoints object that includes the points and the 
minEigenvalue

I = double(rgb2gray(imread('shapes.png')));

corners = detectHarrisFeatures(I);

p = corners.selectStrongest(20);

I = insertMarker(I, p, '+', 'Color', 'magenta');

imshow(I); 


http://uk.mathworks.com/help/vision/ref/detectharrisfeatures.html


Kanade-Lucas-Tomasi (KLT) tracker

• The KLT tracker is a popular algorithm to track feature points through a video 
sequence.  


• It works best for corners on objects that do not change shape and remain in the 
field of view.


• It applies the Kanade-Lucas optical flow method to a (sparse) set of feature 
points.  



Kanade-Lucas-Tomasi (KLT) tracker

KLT technique in Matlab includes some additional features.

1. Bidirectional error calculation.  If a feature is correctly tracked from frame 

t to frame t+1, then it should be possible to track the feature from t+1 back to 
frame t (e.g., running time backwards).  The error, computed as a distance in 
pixels (from the original location to the final location after backward tracking) 
should be small.  If the error is too high, the point is considered to be “lost”.

frame t frame t+1

forward track

backward track
error



Kanade-Lucas-Tomasi (KLT) tracker

2. Use of image pyramids.  An image pyramid is a scale-space technique that 
creates successive downsampled versions of the image and lowering 
resolutions.  The KLT algorithm works in a coarse-to-fine fashion, first 
tracking on the lowest resolution image and then increasing the resolution.  
This helps with larger displacements.  



Naturally this is done on both frames

image Iimage J

Gaussian pyramid of image 1 (t) Gaussian pyramid of image 2 (t+1)

image 2image 1

run iterative L-K

run iterative L-K

upsample

.


.


.



Kanade-Lucas-Tomasi (KLT) tracker

3. Control of neighbourhood size.  The tracker allows the programmer to 
configure the size of the neighbourhood used in the KL optical flow method.  
The width and height must be odd integers.


4. Control of number of iterations.  The tracker is iterative, searching for the 
new location of each point being tracked until convergence.  The algorithm 
normally converges in 10 iterations, but one can set a limit.



PointTracker

• In Matlab, KLT tracking is implemented using the vision.PointTracker system 
object.  It allows you to track a set of points from one frame to the next.


• To use it, 

1. Create a PointTracker system object.

2. Initialise the tracking based on some points identified in the first frame.

3. Track points in the next frame using the step method, producing updated 

point locations.

4. Go to 3; possibly adding new points to be tracked due to loss

http://uk.mathworks.com/help/vision/ref/vision.pointtracker-class.html


Face tracking example

• First, we detect a face using the cascade object detector

videoReader = VideoReader('videoCapture.avi');

I = readFrame(videoReader);

 

 

% Create a cascade detector object.

faceDetector = vision.CascadeObjectDetector();

bbox = step(faceDetector, I);

I = insertShape(I, 'Rectangle', bbox);

figure; imshow(I); 



Face tracking example

• Now, let’s find some good features to track in the face area


⇨  How might this be improved?

points = detectMinEigenFeatures(rgb2gray(I), 'ROI', bbox);

points = points.Location;

I = insertMarker(I, points, '+', 'Color', 'white');

imshow(I);

Limit to a bounding box



Face tracking example

• Let’s track those points through the video

pointTracker = vision.PointTracker();

initialize(pointTracker, points, I);


while hasFrame(videoReader)

    I = readFrame(videoReader);

 

    % Track the points. Note that some points may be lost.

    [points, isFound] = step(pointTracker, I);

    visiblePoints = points(isFound, :);

 

    I = insertMarker(I, visiblePoints, '+', 'Color', 'white');

    image(I);


    % Update points

    setPoints(pointTracker, visiblePoints);

 

end

 

release(pointTracker);




Face tracking example

• Tracking the face with a box

 

pointTracker = vision.PointTracker();

initialize(pointTracker, points, I);

 

% Get the bounding box, and save the points detected so far

bboxPoints = bbox2points(bbox(1, :));

oldPoints = points;

 

while hasFrame(videoReader)

    I = readFrame(videoReader);

 

    % Track the points. Note that some points may be lost.

    [points, isFound] = step(pointTracker, I);

    visiblePoints = points(isFound, :);

    oldInliers = oldPoints(isFound, :);

 

    [xform, oldInliers, visiblePoints] = estimateGeometricTransform(...

        oldInliers, visiblePoints, 'similarity', 'MaxDistance', 4);

 

    % Apply the transformation to the bounding box points and insert into image

    bboxPoints = transformPointsForward(xform, bboxPoints);

    bboxPolygon = reshape(bboxPoints', 1, []);

    I = insertShape(I, 'Polygon', bboxPolygon, 'LineWidth', 2);

    I = insertMarker(I, visiblePoints, '+', 'Color', 'white');

    image(I);

 

    % Reset the points

    oldPoints = visiblePoints;

    setPoints(pointTracker, visiblePoints);

 

end

release(pointTracker);
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Video stabilisation example

• In this example, we will identify feature points and track them through a video. 

• We’ll use the tracked points to estimate an affine transformation from one frame 

to the next, and composite this transformation to stabilise the video.

Unstabilised video Stabilised video



Initialising the KLT tracker

% Load a video

videoReader = VideoReader('jerkyKeyboard.mp4');

I = imresize(readFrame(videoReader), 0.25);

[rows, cols, planes] = size(I);

 

% Initialise the tracker on the feature points

points = detectMinEigenFeatures(rgb2gray(I));

pointTracker = vision.PointTracker();

initialize(pointTracker, points.Location, I);

oldPoints = points.Location;



Stabilisation

 
Tcumulative = affine2d;

while hasFrame(videoReader)

    % Process each frame

    I = imresize(readFrame(videoReader), 0.25);

    [points, isFound] = step(pointTracker, I);

    visiblePoints = points(isFound, :);

        

    % Find a mapping between frames and accumulate from first frame

    tform = estimateGeometricTransform(points, oldPoints, 'affine');

    Tcumulative.T = tform.T *  Tcumulative.T;

    

    % Warp image and points

    IWarp = imwarp(I, Tcumulative, 'OutputView', imref2d(size(I)));

    warpedPoints = transformPointsForward(Tcumulative, points);

    

    % Show tracked points on unwarped and warped images

    I = insertMarker(I, points, '+', 'Color', 'green');

    IWarp = insertMarker(IWarp, warpedPoints, '+', 'Color', 'yellow');

    

    % Composite video to show as a splitscreen

    K = IWarp;

    K(1:rows, 1:cols/2, :) = I(1:rows, 1:cols/2, :);

    imshow(K);

    

    % Reset the points for tracking on the next frame

    oldPoints = visiblePoints;

    setPoints(pointTracker, oldPoints);    

        

end



Result

• Some more examples 



Horn-Schunck in Matlab

• In Matlab, you can implement optical flow using Horn-Schunck using the 
estimateFlow function and an opticalFlowHS object.


• Syntax(es)

◦ flow = estimateFlow(I, obj) where I is a grayscale image and obj 

is an opticalFlow object.  

◦ obj = opticalFlowHS(Name, Value) where Name/Value are 

optional arguments, e.g., 'Smoothness', 0.5 or 'MaxIteration', 15

• Example:

vidReader = VideoReader('viptraffic.avi');

ofHS = opticalFlowHS;

while hasFrame(vidReader)

    I = readFrame(vidReader);

    G = rgb2gray(I);

 

    flow = estimateFlow(ofHS, G);

 

    imshow(I);

    hold on;

    plot(flow,'ScaleFactor',25);

    hold off;

end

http://uk.mathworks.com/help/vision/ref/opticalflowlk.estimateflow.html
http://uk.mathworks.com/help/vision/ref/opticalflowhs-class.html


Lucas-Kanade in Matlab

• In Matlab, you can implement optical flow using Lucas-Kanade using the 
estimateFlow function and an opticalFlowLK object.


• Syntax

◦ obj = opticalFlowLK(Name, Value) where Name/Value are 

optional argument for a noise threshold: 'NoiseThreshold', 0.005

• Example:

vidReader = 
VideoReader('viptraffic.avi');

ofLK = opticalFlowLK;

 

while hasFrame(vidReader)

    I = readFrame(vidReader);

    G = rgb2gray(I);

 

    flow = estimateFlow(ofLK, G);

 

    imshow(I);

    hold on;

    plot(flow,'ScaleFactor',2);

    hold off;

end


http://uk.mathworks.com/help/vision/ref/opticalflowlk.estimateflow.html
http://uk.mathworks.com/help/vision/ref/opticalflowlk-class.html


Farneback’s method

• Farneback’s method locally models the image brightness as a 2D polynomial 
function, and computes the translation between frames.  It uses a pyramidal 
(coarse to fine) approach and is iterative.


• Syntax

◦ obj = opticalFlowFarneback(Name, Value) where Name/Value 

are optional arguments, for example: 'NumPyramidLevels', 2 or 
'NumIterations', 5


• Example:
vidReader = 
VideoReader('viptraffic.avi');

ofF = opticalFlowFarneback;

while hasFrame(vidReader)

    I = readFrame(vidReader);

    G = rgb2gray(I);

 

    flow = estimateFlow(ofF, G);

 

    imshow(I);

    hold on;

    plot(flow,'DecimationFactor', ...

         [5 5],'ScaleFactor',2);

    hold off;

end

http://uk.mathworks.com/help/vision/ref/opticalflowfarneback-class.html

