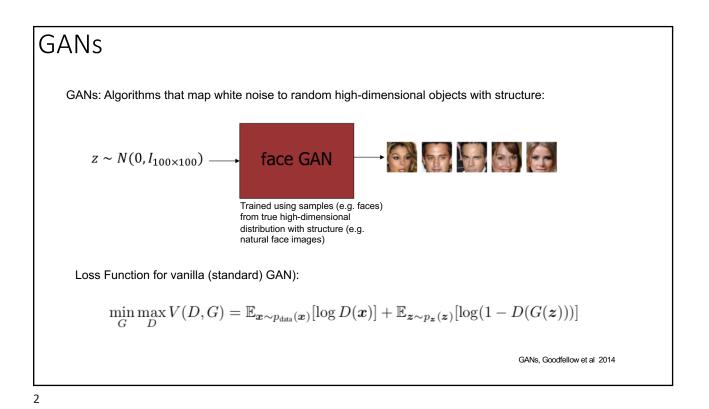
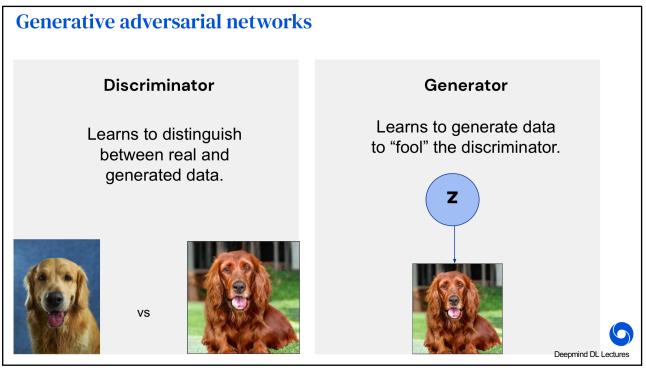
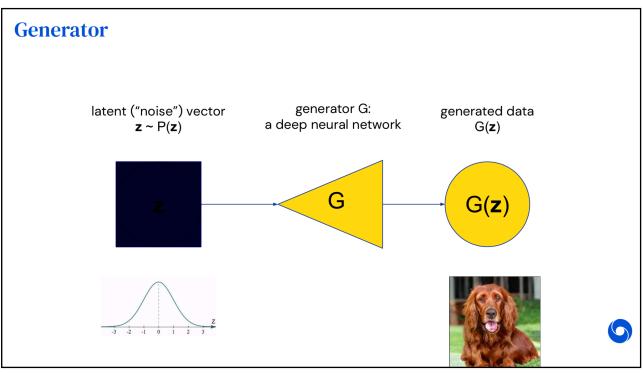
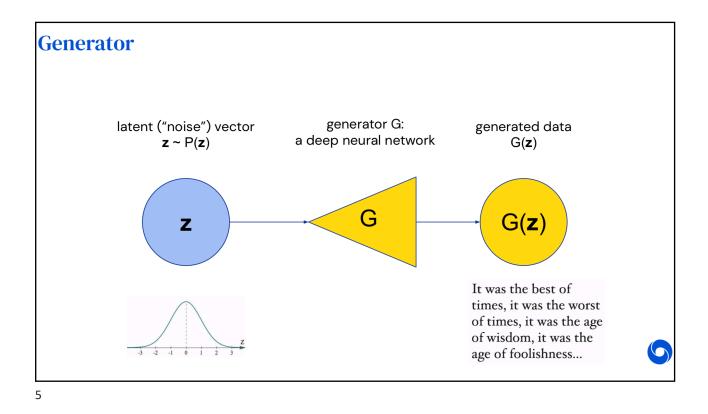
BLG 561E Deep Learning Lecture 10: Implicit Generative Deep Learning Models: GANs

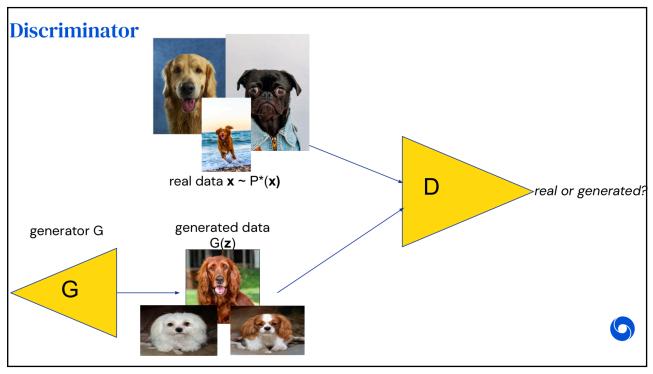
Prof. Gozde Unal Istanbul Technical University Fall 2021

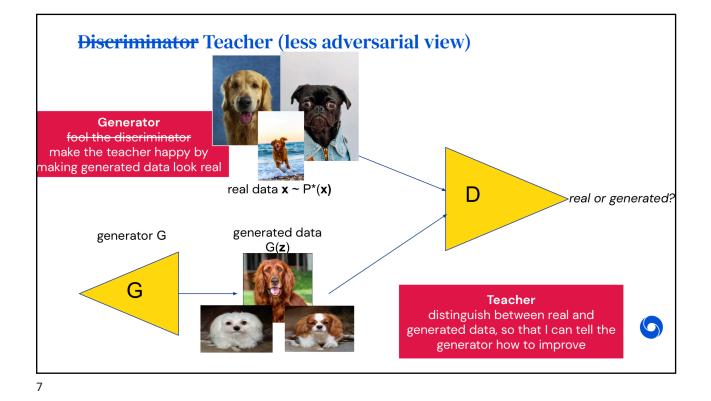


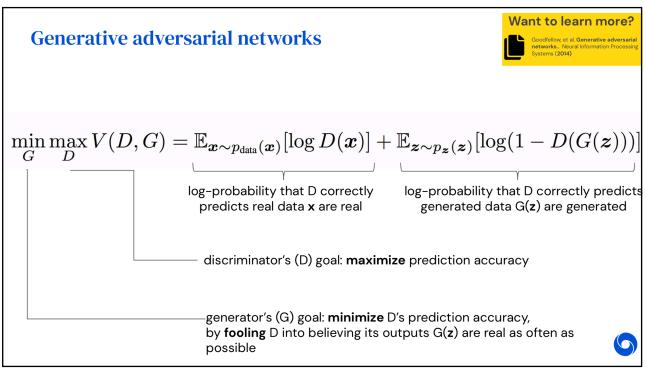


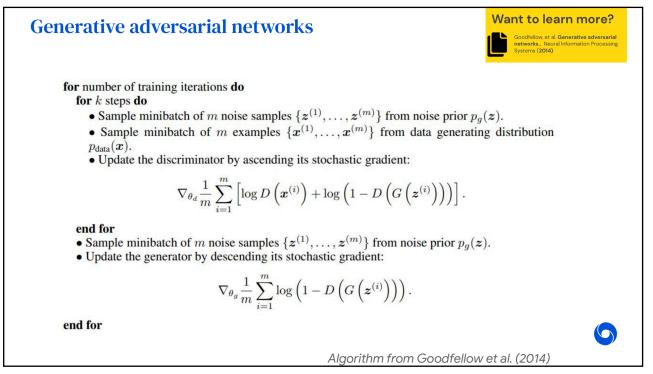


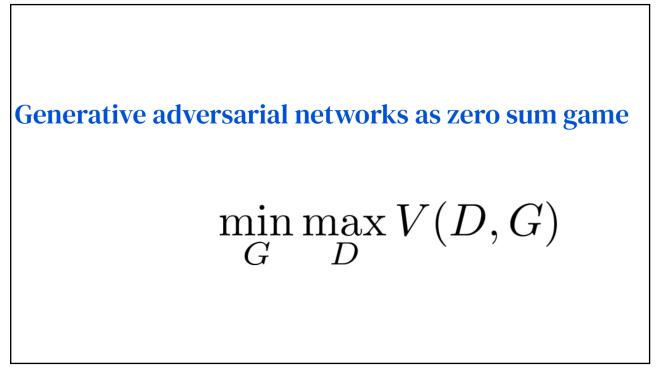












Min-Max theorem

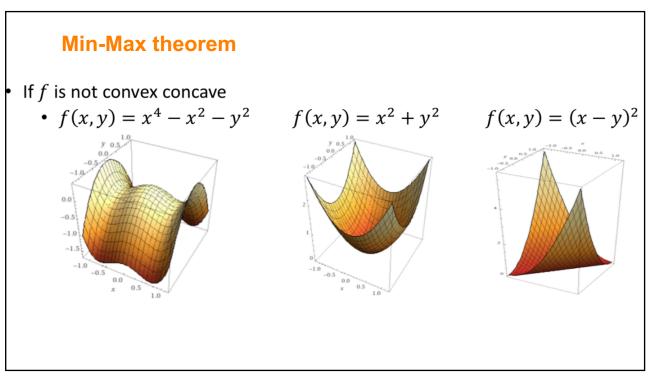
• [von Neumann 1928]: If $X \subset \mathbb{R}^n$, $Y \subset \mathbb{R}^m$ are compact and convex, and $f: X \times Y \to \mathbb{R}$ is convex-concave (i.e. f(x, y) is convex in x for all y and is concave in y for all x), then

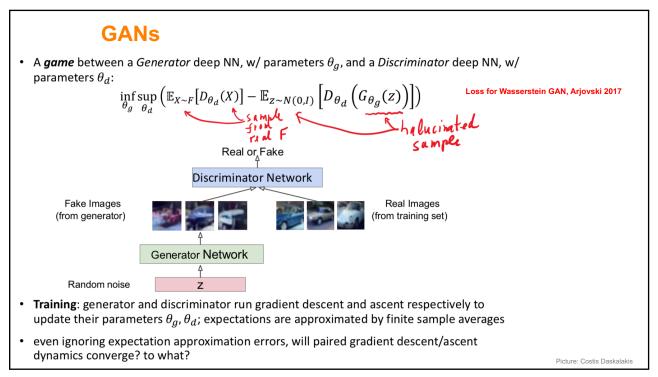
 $\min_{x \in X} \max_{y \in Y} f(x, y) = \max_{y \in Y} \min_{x \in X} f(x, y)$

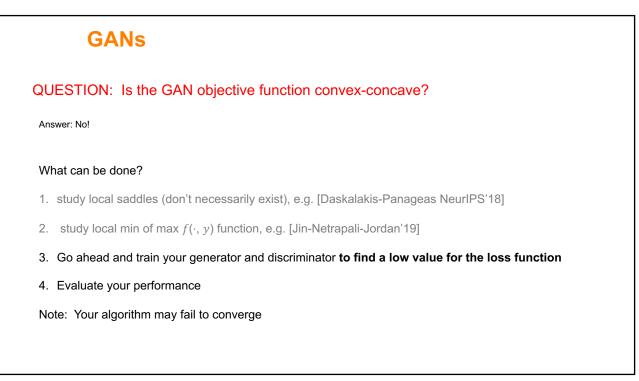
• Min-max optimal point (x, y) is essentially unique (unique if f is strictly convex-concave, o.w. a convex set of solutions); value always unique

• E.g.
$$f(x, y) = x^2 - y^2 + x \cdot y$$

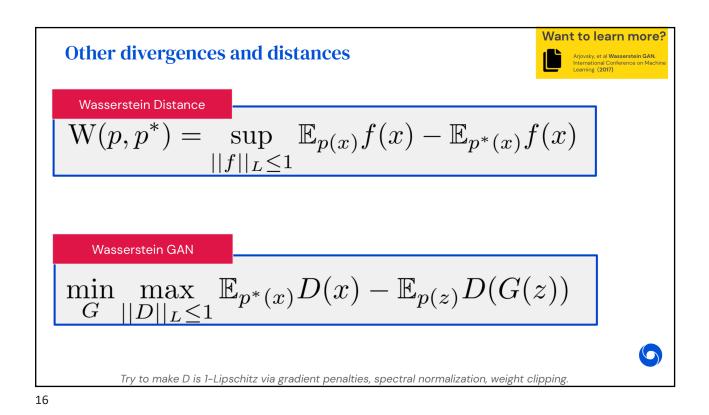
0.0







Architec	ture guidelines for stable Deep Convolutional GANs
	Replace any pooling layers with strided convolutions (discriminator) and fractional-strided convolutions (generator).
•	Use batchnorm in both the generator and the discriminator.
•	Remove fully connected hidden layers for deeper architectures.
•	Use ReLU activation in generator for all layers except for the output, which uses Tanh.
•	Use LeakyReLU activation in the discriminator for all layers.
	rvised Representation Learning with Deep Convolutional GANs, Radford et al ICLR 2016



Wasserstein GANs, Arjovski et al 2017

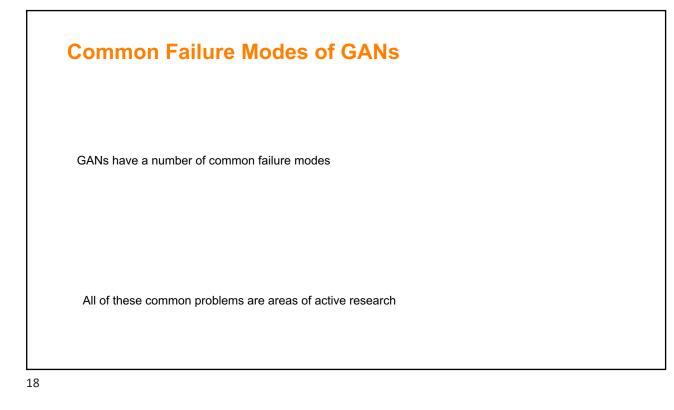
Wasserstein GAN

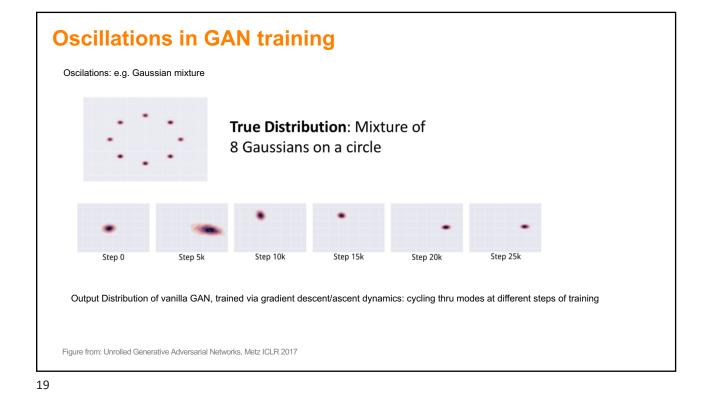
Algorithm 1 WGAN, our proposed algorithm. All experiments in the paper used the default values $\alpha = 0.00005$, c = 0.01, m = 64, $n_{\text{critic}} = 5$.

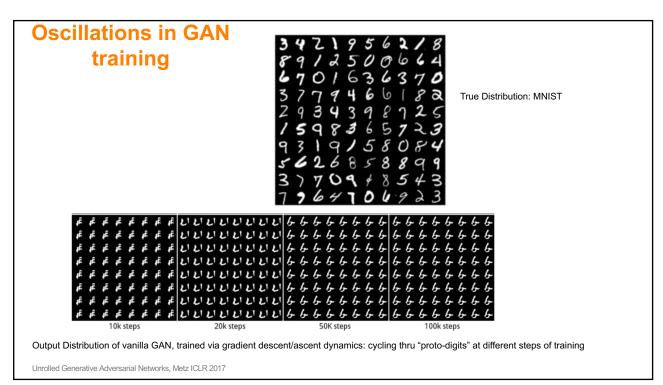
Require: : α , the learning rate. c, the clipping parameter. m, the batch size. n_{critic} , the number of iterations of the critic per generator iteration.

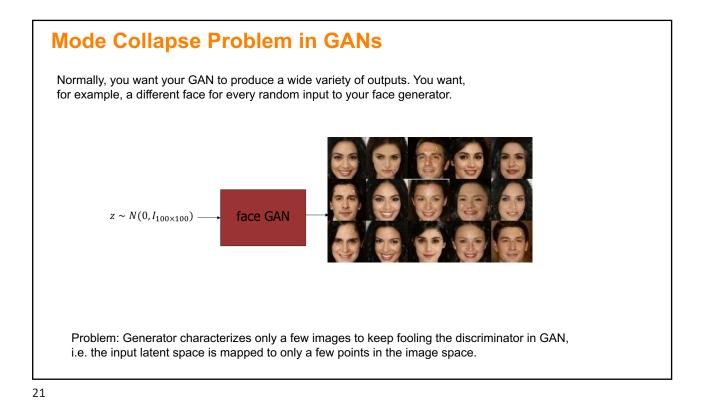
Require: : w_0 , initial critic parameters. θ_0 , initial generator's parameters.

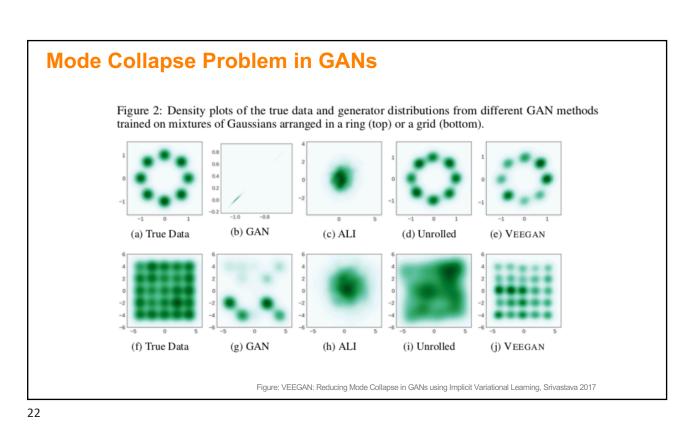
1: while θ has not converged do for $t = 0, ..., n_{\text{critic}}$ do 2: Sample $\{x^{(i)}\}_{i=1}^m \sim \mathbb{P}_r$ a batch from the real data. Sample $\{z^{(i)}\}_{i=1}^m \sim p(z)$ a batch of prior samples. $g_w \leftarrow \nabla_w \left[\frac{1}{m}\sum_{i=1}^m f_w(x^{(i)}) - \frac{1}{m}\sum_{i=1}^m f_w(g_\theta(z^{(i)}))\right]$ $w \leftarrow w + \alpha \cdot \text{RMSProp}(w, g_w)$ 3:4:5: 6: 7: $w \leftarrow \operatorname{clip}(w, -c, c)$ end for 8: Sample $\{z^{(i)}\}_{i=1}^m \sim p(z)$ a batch of prior samples. $g_{\theta} \leftarrow -\nabla_{\theta} \frac{1}{m} \sum_{i=1}^m f_w(g_{\theta}(z^{(i)}))$ 9: 10: $\theta \leftarrow \theta - \alpha \cdot \text{RMSProp}(\theta, g_{\theta})$ 11: 12: end while











GAN Variants: VeeGAN

An idea to address mode collapse

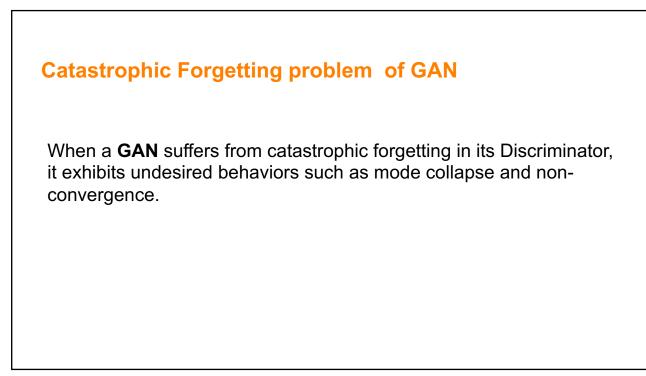
loss. More precisely, we minimize a loss function, like ℓ_2 loss between $z \sim p_0$ and $F_{\theta}(G_{\gamma}(z))$). To quantify whether F_{θ} maps the true data distribution to a Gaussian, we use the cross entropy $H(Z, F_{\theta}(X))$ between Z and $F_{\theta}(x)$. This boils down to learning γ and θ by minimising the sum of these two objectives, namely

$$\mathcal{O}_{\text{entropy}}(\gamma, \theta) = E\left[\|z - F_{\theta}(G_{\gamma}(z))\|_{2}^{2} \right] + H(Z, F_{\theta}(X)).$$
(1)

While this objective captures the main idea of our paper, it cannot be easily computed and minimised. We next transform it into a computable version and derive theoretical guarantees.

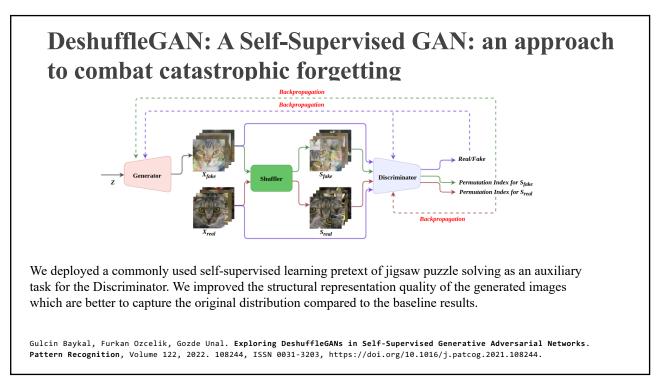
The main idea of VEEGAN: introduce a second network $F\theta$, the *reconstructor network*, which is learned both to map the true data distribution p(x) to a Gaussian and to approximately invert the generator network.

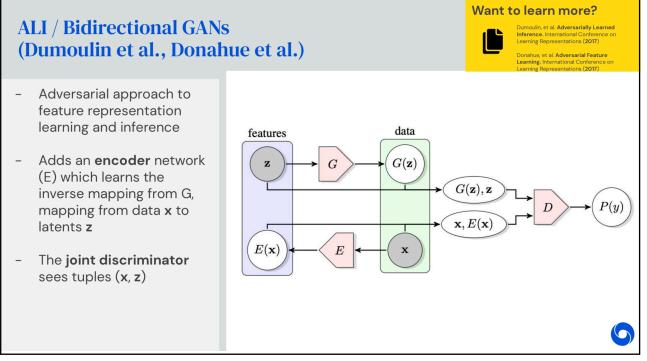
VEEGAN: Reducing Mode Collapse in GANs using Implicit Variational Learning, Srivastava 2017

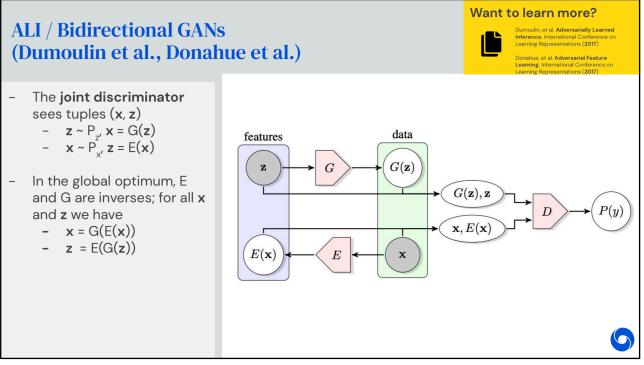


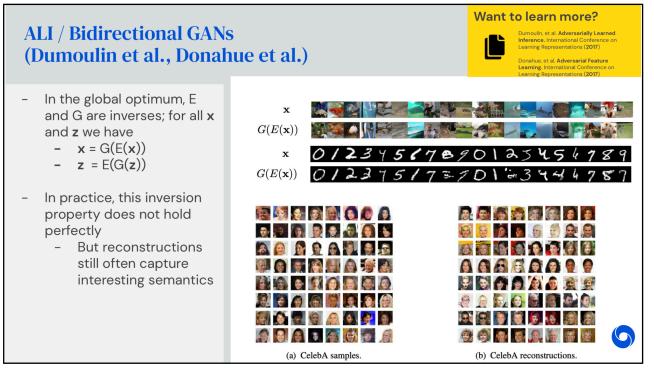
AdaGAN

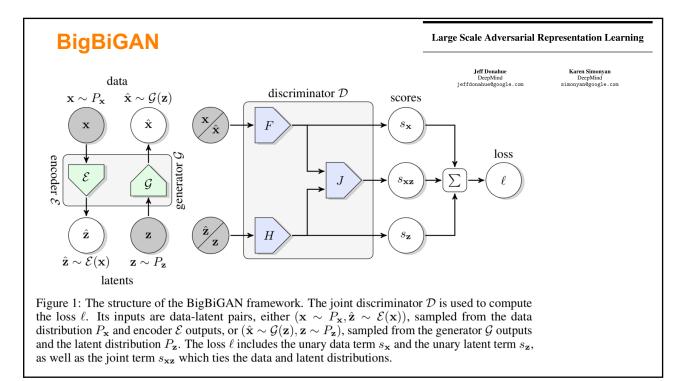
* Accepting that the GAN will cover only a subset of the modes in the dataset, train	Algorithm 1: AdaGAN, a meta-algorithm to construct a "strong" mixture of T individual GANs, trained sequentially. The mixture weight schedule ChooseMixtureWeight and the training set reweighting schedule UpdateTrainingWeights should be provided by the user. Section $\underline{3}$ gives a complete instance of this family.
multiple GANs to cover	Input: Training sample $S_N := \{X_1, \ldots, X_N\}.$
different modes	Output: Mixture generative model $G = G_T$.
dillerent modes	Train vanilla GAN:
* Lie a secultive la seconda sections	$W_1 = (1/N, \dots, 1/N)$
* Use multiple generative	$G_1 = \operatorname{GAN}(S_N, W_t)$
models combined into a	$\mathbf{for}\;t=2,\ldots,T\;\mathbf{do}$
mixture	#Choose a mixture weight for the next component
	$\beta_t = \text{ChooseMixtureWeight}(t)$
Q: what is the main downside	#Update weights of training examples
of this approach?	$W_t = \text{UpdateTrainingWeights}(G_{t-1}, S_N, \beta_t)$
	$\#$ Train t-th "weak" component generator G_t^c
	$G_t^c = \operatorname{GAN}(S_N, W_t)$
	# Update the overall generative model
	#Notation below means forming a mixture of G_{t-1} and G_t^c .
	$G_t = (1 - \beta_t)G_{t-1} + \beta_t G_t^c$
	end for
AdaGAN: Boosting Generative Models, Tolstikhin et al	2017.

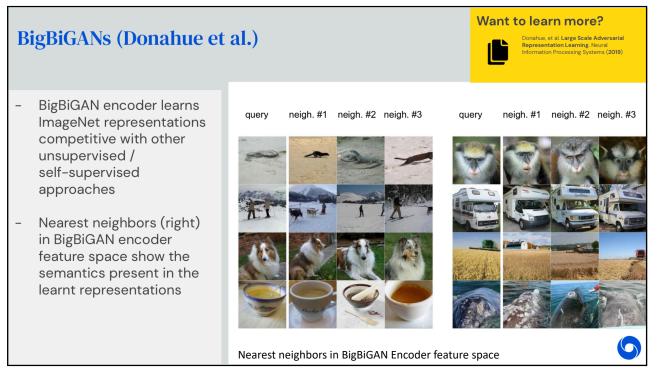


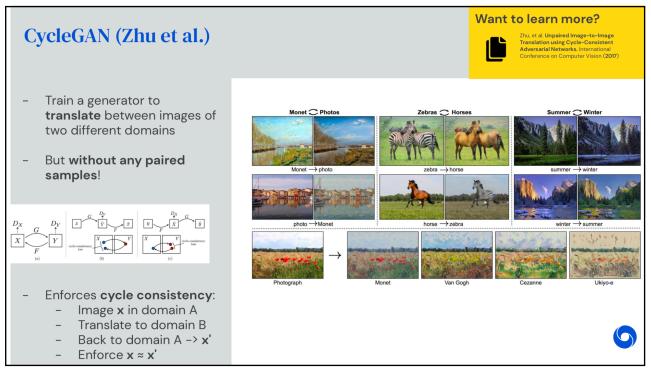


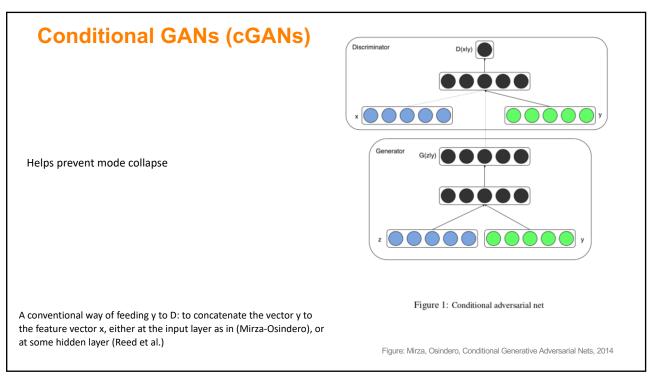


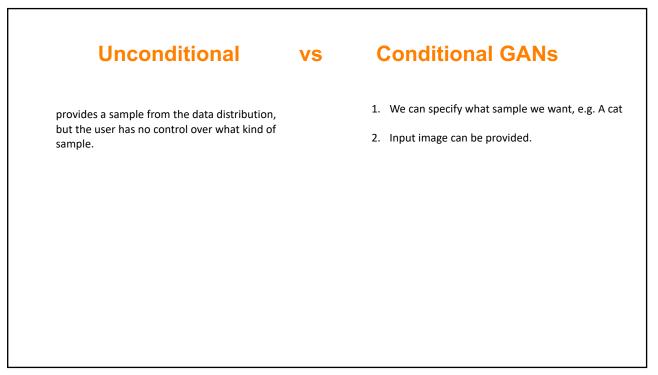


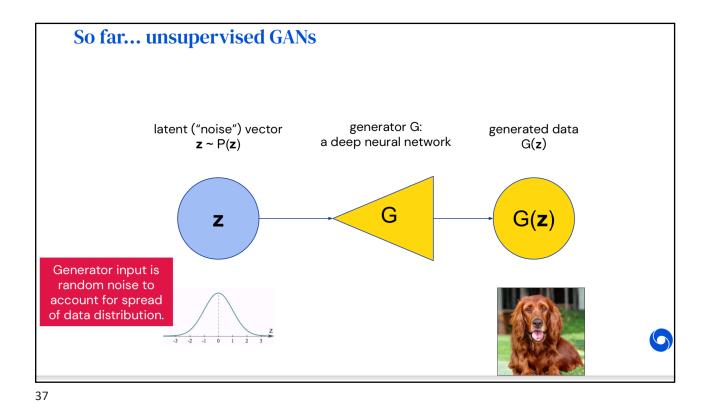


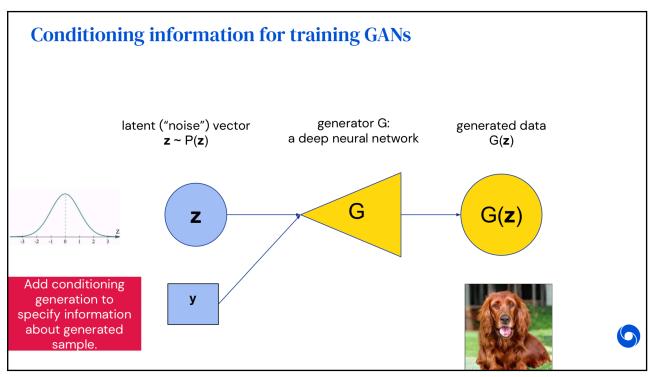


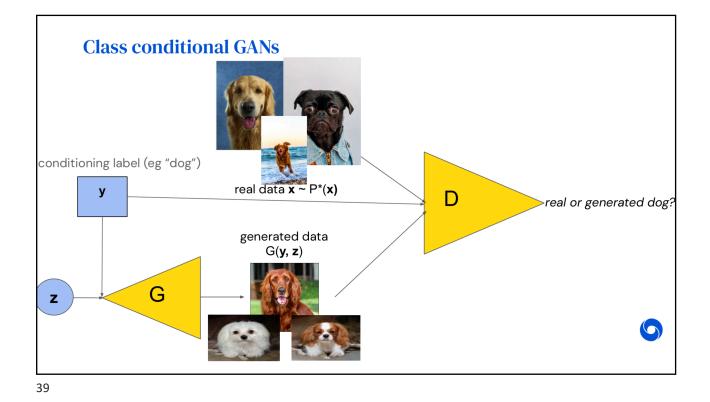


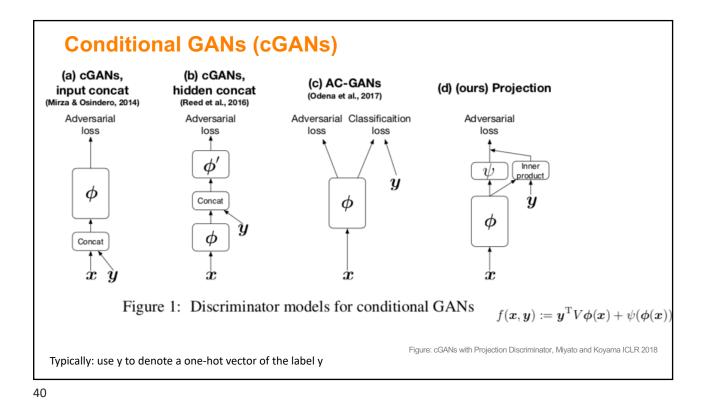


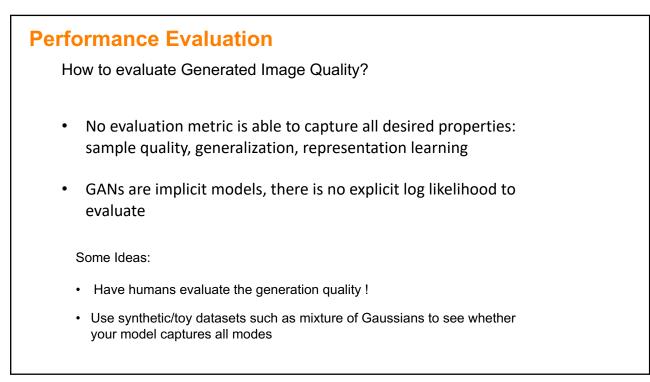


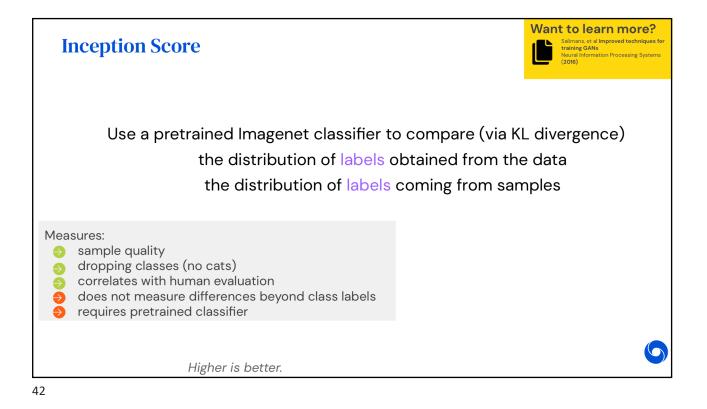


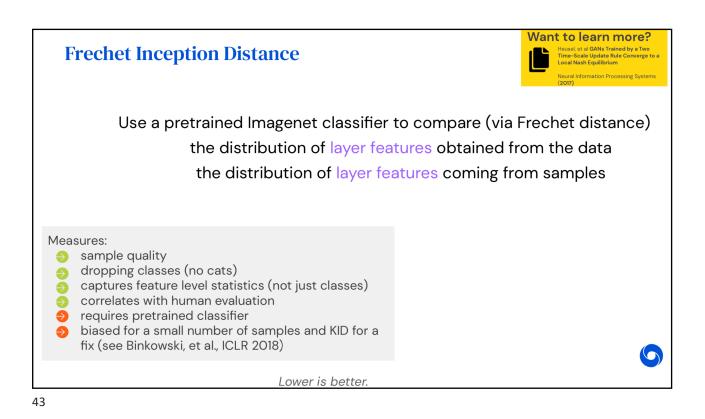


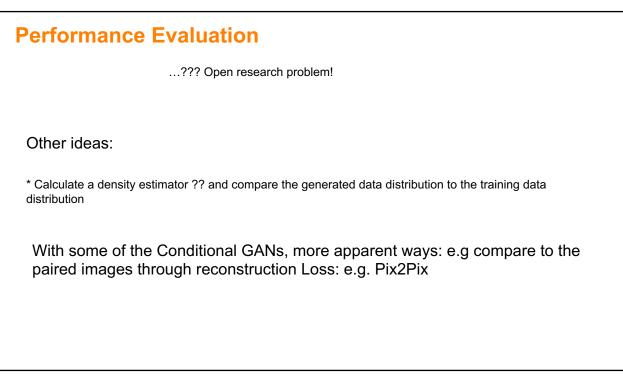












GANs: The most active current area of research in Deep Unsupervised Learning

Please read material I referred to in these slides, as well as others that may be of interest to your own work

THE END